
Developing Procedural
Generation Tools for Video

Game Audio Designers

by

Christopher Wratt

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Engineering
in Electronics and Computer Systems Engineering

Victoria University of Wellington
2020

Abstract
In video games, audio is often a vital element in the creation of immersive gaming
experiences. One set of techniques that are particularly well suited to attaining this
immersion are procedural audio techniques. These techniques enable enhanced
immersion through supporting close synchronisation between player and game
state in ways that are difficult to achieve with other game audio techniques. While
this is the case, there is a lack of GUI and script-based tools that support the use of
such techniques. This thesis explores this lack, and documents the development of
two new video game tools for the creation of procedurally generated audio.

The first of these tools is a Musical Instrument Digital Interface (MIDI) library that
supports the playback and real-time manipulation of MIDI files in the Unity game
engine. The tool achieves real-time procedural audio, yet fails to meet required
levels of time accuracy and is only a partial success. The second tool developed is a
plugin hosting application that enables the use of the popular audio plugin format,
VST2, in the Unity game engine. The tool succeeds in achieving VST2 effect plugin
loading and, at the time of the completion of this thesis, is the only tool capable of
embedding such plugins into applications developed in a major game engine. This
will be of significant benefit to game developers who wish to achieve a high degree
of immersivity in the music and sound design in their games.

ii

Acknowledgments

Firstly I would like to thank my two supervisors, Dale Carnegie and Jim Murphy.
Thank you both for your open mindedness, flexibility, and your high-speed editing
skills which have kept me going throughout this project.

Thank you to my parents David and Clare and my brother James for putting up
with all of my shenanigans and for always being there for me, even when I act like
a diva.

Thank you to the Victoria University of Wellington Scholarships Office for your
financial support. Without it this project would never have been possible.

Thank you to the International Game Developers Association (IGDA) who supplied
scholarships that allowed me to attend Melbourne International Games Week and
San Francisco Games Developers Conference (GDC) while undertaking this thesis.
Many of the contacts I made at these conferences will be friends for the rest of my
life.

Thank you to the international game development community. Your guidance via
Slack, Facebook, Twitter, and in person has contributed vastly in the creation of this
document. Special thanks to community members Aaron McLeran, Rich Vreeland,
Peter Curry, and Charlie Huguenard for your technical support in interactive game
audio over the past two years.

Thank you to Marika, Deet, Maddison, Hana, Katie, and Plague for being wonder-
ful, kind friends who have helped me to remain human-resembling throughout this
project. You are all amazing people whom I love.

Finally, thank you to my friends Jos and Piupiu for sharing with me your love for
chiptune and game music. Your friendship and knowledge created the spark that
started this research.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Goal and Evaluative Criteria 2
1.3 Thesis Structure . 3

2 Related Works 5
2.1 Interactive Game Audio Development 7

2.1.1 Looping Music . 7
2.1.2 Vertical Re-Mixing . 8
2.1.3 Horizontal Re-Sequencing . 9
2.1.4 Procedural Audio . 10

2.2 Digital Audio Synthesis, Effects, and Organisation 12
2.2.1 Digital Audio Synthesis . 13
2.2.2 Digital Audio Effects . 15
2.2.3 Audio Organisation Protocols 16

2.3 Algorithmic Composition . 17
2.3.1 Stochastic Composition . 18
2.3.2 Rules-Based (or Formal Grammar) Composition 19
2.3.3 Artificial Intelligence in Composition 21
2.3.4 Summary . 21

2.4 Audio Tools Development for Video Games 22

3 Preliminary Development 29
3.1 Technical Requirements . 30
3.2 Procedural Audio Techniques in Game Audio Environments 32

3.2.1 FMOD Studio . 33
3.2.2 Wwise . 35
3.2.3 Unity Engine . 37

v

vi CONTENTS

3.2.4 Unreal Engine . 45
3.2.5 Section Summary . 48

3.3 Exploration of Early Game Audio Systems 49
3.3.1 NES . 49
3.3.2 1990s-Style MIDI System . 54

3.4 Pure Data . 58
3.5 Chapter Summary . 64

4 Implementation 67
4.1 Tool 1: Unity MIDI System . 68

4.1.1 Overview of Tool . 68
4.1.2 Inter-Programming Language Communication 73
4.1.3 Comparison to Existing C# MIDI Tools 75
4.1.4 Section Results . 77

4.2 Tool 2: Unity VST System . 81
4.2.1 Overview of Tool . 82
4.2.2 Audio Programming in C and C++ 84
4.2.3 VST-Host Architecture . 87
4.2.4 Extended Inter-Programming Language

Communication . 89
4.2.5 Section Results . 91

4.3 Section Summary . 96

5 Conclusion 97
5.1 Summary . 97
5.2 Future Works . 99
5.3 Final Remarks . 100

List of Figures

2.1 Looping audio in the DAW Reaper . 8
2.2 Monkey Island 2: Le Chuck’s Revenge 9
2.3 Rez gameplay . 12
2.4 NES console . 14
2.5 Performance of John Cage’s Reunion 18
2.6 Spore gameplay . 20
2.7 Doom gameplay . 23
2.8 Unity editor example . 24

3.1 FMOD timing test . 34
3.2 Wwise Synth One . 37
3.3 Graph of time inaccuracies using Unity Engine 39
3.4 Graph of time inaccuracies using Unreal Engine 46
3.5 Unreal blueprints code demonstrating audio playback function . . . 47
3.6 Unreal blueprints code demonstrating looped event scheduling . . . 47
3.7 Block diagram of data flow in NES audio system 54
3.8 Synthesis GUI for Pd patch . 60
3.9 Sequencer section of Pd patch . 60
3.10 Graph of recorded time inaccuracies in Pd 62
3.11 Pd metronome code . 63
3.12 A feature comparison of software examined in Chapter 3 65

4.1 Block diagram and dataflow of Unity MIDI system 69
4.2 MIDI source component GUI . 70
4.3 MIDI engine component GUI . 72
4.4 Mean and standard deviation of audio timing inaccuracies of the

Unity MIDI library when tested with a C major scale over five iterations 80
4.5 Unity VST effect GUI . 83

vii

viii LIST OF FIGURES

4.6 Block diagram of Unity VST host showing major C# and C++ classes
and inter-language dataflow . 85

4.7 Waveform output from Reaper and Unity VST host running delay
plugin for visual comparison . 92

4.8 Waveform output from Reaper and Unity VST host running delay
plugin for visual comparison, close up 93

4.9 Un-effected waveform output from Reaper and Unity for visual
comparison . 94

4.10 Un-effected waveform output from Reaper and Unity for visual
comparison, close up . 94

4.11 Waveform output from Reaper and Unity VST host running TAL-
Reverb plugin for visual comparison 95

Listings

3.1 ChucK program for testing sample accuracy 32
3.2 Unity code for 120 BPM metronome audio using framerate Update()

function . 40
3.3 Unity code for 120 BPM metronome audio using PlayScheduled(...)

function . 41
3.4 Unity code for 120 BPM metronome audio using OnAudioFilter-

Read(...) function . 43
3.5 Square wave synthesis code on NES using CC65 library 51
3.6 Organisation of musical data on NES with the use of 2D array 53
3.7 Playing MIDI notes in processing with the JavaX library 57
4.1 C# export code for functions to C . 73
4.2 dll function exporting from C of the midiEvent function for schedul-

ing MIDI event play back . 73
4.3 Sending text data from C to C# via the use of raw pointers and

functions via C#’s interopServices library 74
4.4 VSTEvent code that generates a MIDI note on message and stores it

in a VSTEvents object . 88
4.5 The marshalling of audio data with IntPtr’s in C# as used in the initial

development on our VST2 host tool 90
4.6 Use of garbage collector calls to avoid memory de-allocation while

inter-programming language data transfer is occurring in C# 90
4.7 Callback using In, Out keywords to send and receive data in C#

from C++ . 91

ix

x LISTINGS

List of Tables

4.1 MIDI file read errors in Unity MIDI library 79

xi

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

In video games, audio plays a vital role in immersing listeners in game experiences.
In order to achieve this immersion, a variety of techniques and tools is utilised by
game audio developers, yet the ongoing development of such technologies and
tools is comparatively under-resourced. This lack of resources and attention is
likely due to a relative over-emphasis on visuals, which have been persistently
prioritised since the inception of the medium (hence the name ‘video’ games).
This disparity is easy to recognise when game development studios that employ
hundreds of staff regularly only employ one or two audio specialists, who are then
responsible for the creation of music and sound effects in all of the company’s
games.

This lack of emphasis on game audio has led to a scarcity of tools, which can make
game audio development a difficult medium to work within. In order to work
comfortably, many game audio developers rely on the use of pre-existing audio
tools from tool-rich mediums such as film audio and recording studio production.
While such tools are well suited to the creation of audio that is identical on every
playthrough (known as linear audio) they generally lack support for the creation of
non-linear audio that is different on each playthrough. Video games, through the
presence of player interaction, are a non-linear medium and, while currently under-
utilised in contemporary games, non-linear audio holds the potential to greatly
enrich player immersion.

One of the most flexible and powerful ways to develop non-linear audio in a digital

1

2 CHAPTER 1. INTRODUCTION

environment is through a technique called procedural audio, and the development
of procedural audio tools for use in video games is the focus of this thesis. In
his book “An Introduction to Procedural Audio and its Application in Computer
Games”, Andy Farnell, a major figure in procedural sound design in video games,
describes procedural audio as “non-linear, often synthetic sound, created in real
time according to a set of programmatic rules and live input” [1]. In this thesis we
expand this definition to include the use of audio effects in a procedural manner,
such as the automation of effect parameters in real-time. The lack of tools that
are capable of achieving procedural audio is regularly acknowledged by game
audio developers. One such developer is Rich Vreeland, one of the world’s top
game audio developers1. In email correspondence with Vreeland in early 2017,
he bemoaned the lack of procedural audio tools in game audio and hoped for the
creation of tools for “runtime sound manipulation using waveforms and samples,
various types of synthesis (subtractive, FM, granular), and an effects chain with
an easy way to build out your own modules and build musical patterns” [2].
Over the last three years, we have regularly heard similar complaints of a lack of
procedural audio tools by game audio developers at conferences, game jams, and
meet-ups.

In spite of this lack of accessible tools, the utilisation of procedural audio in video
games has existed since the first audio was implemented in digital video games
in the 1970s. In spite of this, support for the use of procedural audio techniques
in games has historically required the expertise of a specialised game audio
programmer with knowledge of digital signal processing (DSP) techniques. The
reliance on such specialists severely limits access to procedural audio techniques in
games, particularly in the creation of independently developed video games.

This thesis works toward addressing this gap through the creation of new procedu-
ral game audio tools. Evaluative criteria for the success of such tools is detailed in
the following section.

1.2 Research Goal and Evaluative Criteria

The primary goal of this thesis is to create tools that allow game audio developers,
without specialised audio programming expertise, to create procedural audio

1Vreeland has composed the music for a variety of major game titles including Hyper Light Drifter,
Fez, and Mini Metro

1.3. THESIS STRUCTURE 3

content in video games. To accomplish this goal, the game audio tools developed
must be able to achieve procedural audio as defined in section 1.1. Expanding
on this definition, criteria for the achievement of procedural audio in video game
development are listed below:

1. Procedural audio in video games should organise audio material or effect
parameters to some extent via the use of algorithmic and non-linear techniques.
Music created should be different on a note-by-note or a structural level each
time that it is heard, and sound design events should not identically repeat. This
enables audio to achieve a high level of variation.

2. Audio created procedurally in video games should be affected by player input,
and should not function as a closed system with no inputs from other elements
of the game engine. One of the primary advantages of using procedural audio
is its ability to interface with in-game events in a way that is more flexible than
other game audio techniques. In order to achieve this, utilising player-input is
vital.

3. Procedural audio generally utilises one or both of real-time audio synthesis and
real-time audio effects. This requires the use of tools that are capable of DSP,
and is further expanded in section 3.1 of this thesis which explores the technical
requirements of such tools. Utilising DSP affords a high level of flexibility of
auditory timbre results and broadens variation potential in procedural game
audio.

Alongside being able to achieve the criteria listed above, a successful procedural
game audio tool should utilise either a graphical user interface (GUI) or a docu-
mented application programming interface (API) that is accessible to game audio
developers who may not possess specialised audio programming expertise. The
tool should also be able to be used in one or more modern game engines that are
used widely by the game development community.

1.3 Thesis Structure

The first chapter of this thesis has discussed the lack of accessible procedural
audio technology for video game developers and has outlined evaluative criteria
required for the successful creation of procedural game audio tools. Chapter 2
explores related works relevant to our research. In section 2.1 we explore interactive

4 CHAPTER 1. INTRODUCTION

audio techniques commonly utilised in game audio. We follow this in section 2.2
with an exploration of the history of computer-based algorithmic composition.
Section 2.3 explores digital audio synthesis and effects and looks at ways in which
the development of digital audio technology has influenced game audio. Finally,
section 2.4 explores existing game audio tools and presents an overview of the
current state of the field.

In Chapter 3 we undertake preliminary procedural audio experiments across
a variety of game audio environments. The chapter consists of four sections.
Section 3.1 sets out technical requirements of a successful procedural game audio
system, against which to test tools throughout the rest of this thesis. In section 3.2
we undertake a series of tests in popular modern game audio development
environments in order to understand their suitability as platforms for procedural
audio tools development. Section 3.3 looks at historical game audio environments
that support procedural audio. It then documents the creation of new tools in these
environments and explores design patterns that made procedural audio achievable
in the past. Finally, in section 3.4 we develop a procedural audio system in
the visual audio programming language Pure Data (Pd) which brings together
techniques explored throughout Chapter 2 and Chapter 3.

In Chapter 4, two new tools for the creation of procedural audio in video games are
presented. Section 4.1 explores the creation of a musical instrument digital interface
(MIDI) file reader and procedural MIDI organisation library for the Unity Game
Engine [3]. Section 4.2 documents the development of a VST2 plugin host for Unity
Engine, which enables the use of a variety of industry-standard audio tools within
Unity Game Engine.

Chapter 5 concludes this document and begins with a summary of our research
achievements and of the thesis as a whole in section 5.1. Section 5.2 discusses
future work that could be undertaken in order to support advancements made in
this thesis. Finally, section 5.3 reviews the thesis achievements.

Chapter 2

Related Works

This chapter explores related research that is relevant to the development of
game audio tools for procedural audio creation. It provides contextual insight
into the current state of game audio tools for procedural audio development
and creates a foundation of knowledge from which to understand the new tools
and methodologies introduced throughout the rest of this thesis. This chapter
begins with a survey of significant modern techniques in interactive game audio
development in section 2.1, before exploring the related fields of algorithmic
composition in section 2.2, and digital audio synthesis, effects, and organisation in
section 2.3. Section 2.4 describes the historical and current state of game audio tools
development and discusses the functionality of a number of modern game audio
tools for implementing game audio. Finally, section 2.5 provides a brief summary
of the chapter.

When discussing game audio tools, it is important to understand the context in
which these tools are used. Modern game development is generally categorised as
either Triple-A or independent (Indie) development, and game audio tool usage is
often different in each of these contexts. A Triple-A game refers to work created by
a large team of game developers (typically 50 or more) that is funded by external
publishers. Prominent examples of Triple-A games include the Assassins Creed™
games by Ubisoft Games, a series of 20 games by a company that employs over
20,000 people, and the Grand Theft Auto series by Rockstar Games. Triple-A game
development companies generally create a number of their own proprietary tools
for game development (known as in-house tools) and employ game tool developers
across a variety of specialisations.

The term Indie refers to individual game developers, or small companies, that make
5

6 CHAPTER 2. RELATED WORKS

games. Due to their limited size, Indie game studios rarely hire specialised tools
developers, and often rely on pre-existing tools that are freely or commercially
available for use in game development.

Another set of definitions that are useful when discussing game audio development
are the different roles that exist in the field. We define the core roles in game audio
development as:

• Game Composer: Game composers are responsible for the creation of musical
assets for video games. Game Composers specialise in the use of music
organisation and notation software such as Sibelius, Finale, and MIDI editing
software to compose musical material. They use Digital Audio Workstations
(DAWs) to mix together musical audio material and to apply audio effects to
such material.

• Sound Designer: Sound Designers create all non-musical audio assets in
video games. This includes the creation of foley1, ambiences, specialised
design of object sounds, and voice-over. Sound Designers specialise in
making and manipulating recordings through the use of DAWs.

• Audio Implementer: Audio Implementers take audio assets created by Game
Composers and Sound Designers and use game audio tools to add those
sounds to video games. Audio Implementers specialise in scripting audio
events based on gameplay, and often have knowledge of common scripting
languages for game development such as Lua and C#. Audio Implementers
also specialise in the use of game audio middleware (software that assists
them in the process of designing audio behaviour in games).

• Audio Programmer: Audio Programmers are responsible for the creation
of game audio tools and for the development of new audio behaviours
not supported in the scripted behaviours of game engines and middleware.
Audio Programmers specialise in developing complex audio behaviours in
game engines and work to extend those engines.

With an understanding of the core terminology in game audio development, and
an outline of the chapter’s structure presented, we have a foundation from which
to describe related works relevant to this thesis.

1Foley is the creation of everyday sound effects related to human movement such as footsteps

2.1. INTERACTIVE GAME AUDIO DEVELOPMENT 7

2.1 Interactive Game Audio Development

While procedural audio tools development for games is the core subject of this
thesis, a broader exploration of interactive audio techniques for game audio is an
important step towards understanding how procedural audio fits within the larger
field of game audio. Video games are an interactive medium and the audio that
is used within them is therefore inherently interactive. There are many different
styles of interactivity in game audio development and this section seeks to discuss
and categorise these styles. The interactive audio techniques discussed here help us
to understand the current state of the art of video game audio. When paired with
subsequent discussions of algorithmic composition and digital audio synthesis and
effects, they provide a strong technical and aesthetic background that informs our
discussion of game audio tools throughout this thesis.

2.1.1 Looping Music

A common approach to game composition is the use of musical material that can
be repeated seamlessly. The technique of looping music became popular in the
1980s in the soundtracks of games such as Super Mario Bros [4] and Donkey Kong
for NES [5]. Looping music was necessary in many early video games due to the
small amounts of available processing, memory, and storage resources on early
game hardware for storing musical data and organisational code. This meant that
long, complex compositions were impractical, and interactive audio behaviour was
significantly limited by the hardware. Short looping musical segments meant that
games could have music playing at all times. Through the creation of a variety
of different loops, composers of the time could cater to different styles and moods
required in different contexts.

In digital interactive systems such as a video games, looping audio is a useful
technique, even when larger RAM and storage space is available. Through using
looping sections of audio that can be interchanged based on player choices in a
game, users define their own pace of change in the music rather than the music
being linearly written to approximate expected player behaviour. In a modern
game audio development context, loopable audio is generally developed in a DAW
and then exported for use in a game. An example of the use of a DAW, in this
case Reaper (a widely used DAW in the creation of game audio assets), to loop
musical phrases can be seen in figure 2.1. In the figure, audio data is selected

8 CHAPTER 2. RELATED WORKS

through use of the white bar at the top of the transport window. Looping of selected
material is then activated through toggling the green ‘loop enable’ button, seen in
the bottom left-hand section of the screen. Audio is often looped in a DAW to
audition for timing or waveform phase inconsistencies before being exported for
use in a game.

Figure 2.1: Looped audio in the DAW Reaper

Looped audio is a powerful and popular technique in game audio, but overuse of
the technique can lead to ear fatigue in the listener and is a common reason for
players muting audio in games. In order to combat problems with looped audio,
game audio creators have developed a number of techniques to reduce the overuse
of audio materials and to introduce greater degrees of audio interactivity into their
games. These techniques are explored throughout the rest of this section.

2.1.2 Vertical Re-Mixing

A technique that has become popular in game composition since the 1990s is
vertical re-mixing of game audio. In the book “Writing Interactive Music for Video
Games”, Michael Sweet defines vertical re-mixing as an “interactive composition
technique in which layers of music are added or taken away to create levels of
intensity and emotion” [6]. When employing vertical re-mixing, different layers
of the composition are faded in and out based on events that occur in the game.
Often vertically re-mixed phrases are looped sections, and through cross-fading

2.1. INTERACTIVE GAME AUDIO DEVELOPMENT 9

between these loops, game composers and audio implementers can create a variety
of musical variations utilising only a small number of layers. A significant early
use of vertical re-mixing in game composition can be found in the 1992 LucasArts
game Monkey Island 2 [7]. Monkey Island 2 uses vertical re-mixing to build
musical tension as the player explores a swamp environment early in the game.
A screenshot taken from the swamp exploration section of the game can be seen in
figure 2.2. The use of vertical re-mixed and looped phrases allows game players
to indirectly control the rate of musical change through their actions. Even when
the players’ exploration of the game environment is erratic or unexpected, music
systems that closely follow the behaviour of the player can be developed with the
use of vertical re-mixing.

Figure 2.2: Screenshot from Monkey Island 2: Le Chuck’s Revenge.

The swamp exploration section pictured is widely recognised for its

utilisation of vertical remixing

Vertical re-mixing is a powerful technique for game audio development, but
problems occur when chord changes are introduced. When all musical material
is in a single musical key, re-mixing materials is possible at any time, but when
chord changes are introduced the technique often needs to be expanded and extra
logic is required. A common solution to this problem is the combination of vertical
remixing with a technique called horizontal re-sequencing.

2.1.3 Horizontal Re-Sequencing

Horizontal re-sequencing is the creation of musical segments that can be joined
together linearly, as opposed the layered approach of vertical re-mixing. Horizontal

10 CHAPTER 2. RELATED WORKS

re-sequencing allows for chord changes determined in real-time based on game
state, and is often employed with looped sections of audio that shift based on player
interaction. Horizontal re-sequencing is most flexible when composers and audio
implementers create different points at which music can shift from one segment to
another. These shifts often occur at important musical moments such as the end of a
bar, on a quarter note pulse, or at a significant chord change. Many game composers
include small transitional composed sections alongside longer linear or looping
sections, which allows for smoother movement between musical materials.

Horizontal re-sequencing is often used alongside vertical re-mixing, and when
combined they form a useful way to support the emotion of narrative arcs in
games. The combination of vertical remixing and horizontal re-sequencing is
common in many modern games such as Journey [8] and Fallout: New Vegas
[9]. With the combination of vertical remixing and horizontal re-sequencing, game
composers can create music that functions similarly to a standard Hollywood film
score, where music closely follows changes in mood on screen. This style of game
audio composition works well in cinematic games, but is less useful in situations
that require strong relationships between individual musical notes and gameplay.
Horizontal re-sequencing may also run into problems when unexpected player
behaviour occurs. For example, players failing to move from area to area of an
open-world environment at an expected rate can lead to looping sequences of audio
that never move to the next horizontal section and can quickly cause auditory
fatigue in listeners. In these situations, procedural audio techniques are often a
more suitable choice as they don’t rely on pre-created audio material, and can
achieve near-infinite variation possibilities.

2.1.4 Procedural Audio

The goal of this thesis is to expand the tools available for creators of procedural
audio in video games, and it is therefore important to define and explore procedural
audio. A definition of procedural audio can be found in section 1.2 of this thesis
which describes the way in which procedural audio techniques bring together
audio synthesis, audio effects, and the real-time organisation of audio. When
applied to video games, procedural audio allows for careful synchronisation
between in-game action and game audio. At its best, procedural game audio
functions like a composer or sound designer creating audio in real-time based on
the players’ interaction with a game.

2.1. INTERACTIVE GAME AUDIO DEVELOPMENT 11

Procedural audio generation systems that can achieve audio synthesis, audio
effects, and real-time organisation of musical material are uncommon in video game
audio. However, a number of games that utilise one or more procedural audio
techniques exist. An early example of the use of procedural audio techniques in
a video game can be found in the soundtrack of 1984 LucasArts game Ball Blazer
[10]. Ball Blazer is a two player sports game for the Atari 2600 console that uses
randomised ‘stochastic’ note choices and real-time audio synthesis techniques to
create melodic variation and tension in its soundtrack. The 1990s saw an expansion
in the popularity of rhythm and music games that made use of procedural
techniques in their composition. In the 1996 game PaRappa the Rapper [11], the
player presses keys in time with a rhythmic pulse in order to have PaRappa (the
lead character) rap in time. While PaRappa the Rapper uses pre-recorded sequences
of audio, its use of player interaction to control musical creation in real-time leads to
non-linear audio that is partially procedural. Five years after the release of PaRappa
the Rapper, game developer Tetsuya Mizaguchi released the psychedelic rhythmic
shooter game Rez [12]. Similar to PaRappa, Rez turns live rhythmic player input
into musical material, yet Rez uses a more detailed approach to melodic generation
than PaRappa the Rapper. Rez creates a sound for every player interaction within
its world and each sound is quantised (locked to a rhythmic grid) and triggers an
audio sample. Figure 2.3 shows an image of Rez gameplay. A significant example
of a fully procedural composition in a video game occurs in the 2008 game Spore
[13]. Spore makes use of both algorithmic composition techniques and real-time
audio synthesis and effects, and will be explored in depth in sections 2.3 and 2.4 in
our discussion of algorithmic composition techniques and game audio tools.

Procedural generation can also be applied to non-musical audio in games. The
use of procedural algorithms for the creation of sound effects can be found in
the 2013 game Grand Theft Auto Five [14], where many of the collision sounds
between objects in the game world are synthesised in real-time. Collision sounds
are a popular area of application for procedural sound design as data about
the collisions often exists in memory as part of the in-game physics system and
can be sonified. Procedural audio generation is also well suited to the creation
of ambiences in games, where recognisable repetition could lead to a break in
the suspension of disbelief. Standard practice in game audio ambience creation
involves looping long ambience files that are changed in different environments,
which requires significant memory and storage space. A further exploration of
the use of procedural models for ambiences and other sound effects can be found

12 CHAPTER 2. RELATED WORKS

Figure 2.3: Game play in Rez, the character at the centre of the screen

destroys objects in time with a metronome

in Andy Farnell’s book Designing Sound [1]. While the procedural generation of
audio has been utilised throughout the history of video game audio, it is often
limited to use in Triple-A games (such as Spore, Grand Theft Auto, and Parapa the
Rapper). Companies that create these games have access to specialised procedural
audio tools developers, yet few tools for procedural audio creation are available for
use outside of a Triple-A context.

2.2 Digital Audio Synthesis, Effects, and

Organisation

A variety of technological advancements in digital audio synthesis, effects, and or-
ganisation has contributed significantly to the field of game audio tools develop-
ment and to the techniques available to game audio developers. We need to explore
these technologies in order to understand the current state of game audio technol-
ogy, and to understand technical possibilities in the creation of procedural audio
tools for video games. Early experiments in digital audio synthesis were under-
taken by Max Mathews at Bell Lab. In 1957 Mathews developed MUSIC, which was
the first widely used music synthesis software. Further significant developments in
audio synthesis occurred in the early 80s at the Institut de Recherche et Coordina-
tion Acoustique/Musique (IRCAM) in Paris, where Miller Puckett developed the

2.2. DIGITAL AUDIO SYNTHESIS, EFFECTS, AND ORGANISATION 13

software Max. Max allowed composers to write interactive computer music and
the software continues to be a widely used tool in interactive digital audio. Puckett
later developed a second program called Pure Data (Pd) based on developments
from Max. Pd has been used in a small selection of game soundtracks and its use
will be explored in our discussion of game audio tools in section 2.3.

Today, much digital audio is created in DAWs. DAWs bring together a vast array of
digital audio organisational protocols in ways that allow audio creators to design
audio for a large variety of purposes. In game audio development, composers
and sound designers work with DAWs and are fluent in the knowledge of the
techniques and organisational protocols utilised by DAWs. Modern popular DAWs
include Pro Tools (popular in film and music mixing), Ableton Live (popular
for music production and DJing), and Reaper (popular in academia and game
audio). DAWs have become the standardised way in which game audio composers
and sound designers create audio content. Later in this thesis, the DAW Reaper
provides us with a number of significant benchmarks for audio latency, protocol
support, and usability, to test our own audio tools against.

2.2.1 Digital Audio Synthesis

As this thesis aims to develop tools for procedural audio in video games, a survey
of the history of audio synthesis, which is a vital technique in the procedural
generation of audio, is an important task. Digital audio synthesis refers to the
use of digital signal processing techniques to algorithmically generate audio. In
digital audio synthesis, signals are produced in code before being translated into
analogue signals via a digital to analogue convertor. They are then transduced
into audio via one or more speakers. Audio must be synthesised at a sample
rate sufficient to create alias-free signals that are within the human hearing range
(20 Hz to 20,000 Hz). The modern standardised sample rate for digital audio is
44100 samples per second for CD and 48000 samples per second for film, which
allows for the re-creation of signals up to the Nyquist frequencies of 22.05 kHz and
24 kHz respectively. Another major parameter in the encoding of digital audio is
the bit-depth at which the audio is sampled. Standard bit depths have changed
significantly throughout the history of audio synthesis, but many modern digital
audio pipelines support 16-bit and 24-bit floating point and integer-based audio
storage and playback.

Early audio in video games was created solely with the use of audio synthesis.

14 CHAPTER 2. RELATED WORKS

While earlier examples of digital audio in video games exist, the eight-bit video
game consoles and personal computers of the 1980s provided us with the first
significant use of audio synthesis to create sound design and music in video games.
Early personal gaming devices such as the Atari 2600 computer and the Nintendo
Entertainment System (NES) used audio synthesis processors that were separate
from their main central processing units. On these early devices, sound was
synthesised with an internal bit-depth from one to eight bits. Due to limitations in
the hardware at the time, many signals were not band-limited and aliasing artefacts
were unavoidable, creating the ’crunchy’ and lo-fidelity timbre of early game audio
soundtracks. Further discussion of the retro game audio technology can be found
in section 3.3 of this thesis, and in the work of Australian academic and chiptune
producer Sebastian Tomczak [15].

Figure 2.4: Nintendo Entertainment System or NES was a popular early

video game console and utilised eight bit audio synthesis

The mid 1980s saw a significant technological advancement in audio synthesis tech-
nology with the commercial release of synthesisers that made use of phase modu-
lation and frequency modulation synthesis (FM). Frequency and phase modulation
synthesis refers to the modulation one waveform’s frequency or phase by that of
another waveform. When the modulation frequency is within the human audible
range, it moves from creating a perceivable pitch change over time at frequencies
under 20 Hz to creating new tonal material. This modulated signal displays har-
monic behaviour difficult to produce with the wavetable synthesis popular in the
1970s and 1980s. FM synthesis was heavily adopted by the video games industry,

2.2. DIGITAL AUDIO SYNTHESIS, EFFECTS, AND ORGANISATION 15

which led to a significant change in the sound of video game audio throughout the
late 1980s and into the 1990s.

With the rise in popularity of red-book audio (an early CD audio format) and
compact disk technology in the mid to late 1990s, audio synthesis lost popularity in
game audio in favour of pre-recorded audio file play-back, yet the use of synthesis
techniques in musical production remains common place outside of a video game
context. Digital audio workstations utilise audio synthesis tools to allow composers
to create synthesis across a huge diversity of timbres, and research in synthesis
techniques such as the use of spectral models to realistically emulate instruments
continues to occur [16]. A recent resurgence of interest in procedural audio has led
to an increase in the use of audio synthesis in video games. Recent titles such as
Fract Osc [17], Grand Theft Auto Five [14], and the upcoming VR title Lambchild
VR utilise real-time audio synthesis.

2.2.2 Digital Audio Effects

Digital audio effects are audio DSP processes applied to pre-existing audio wave-
forms to change some aspect of the signal. The research and development of digital
audio effect technology closely resembles that of digital audio synthesis, yet the
application of real-time audio effects in games has been significantly different from
that of synthesis. In early game audio, effect implementation was often too resource
heavy for the hardware of the time, and its use was severely limited.

Since that time, while digital audio synthesis use has declined in modern game
audio, the use of real-time digital audio effects has become an increasingly popular
technique. One example of an audio effect processing tool in video games can
be seen on the Sony Playstation 1, released in 1994, which included a digital
reverberation effect implemented on its sound processing unit. Modern game audio
middleware and game engines often support the use of real-time audio effects, and
their use can be found in a number of modern video games (for example, Call of
Duty Modern Warfare 2 which uses lowpass filtering [18], Half Life 2 which uses
different reverb algorithm coefficients in each room [19], and the game 140 which
uses bit-depth and sample rate reduction [20]). Through the rise in popularity of
the use of audio effects in games, a number of new tools have been created such as
tools used in the games listed above, yet audio effect tools development for video
games lags significantly behind the effects tools available in DAWs. This lack has
been lamented repeatedly in the video games industry by influential game audio

16 CHAPTER 2. RELATED WORKS

developers such as Disasterpeace [2] and has been discussed on the influential
Game Audio Podcast [21].

The use of real-time digital audio effects in video game audio is an important tech-
nique for use in procedural audio, and audio effects are well suited to expanding
the timbre possibilities of synthesised audio. The use of digital audio effects has
also become a key feature of modern audio production in DAWs. As mentioned in
Chapter 1, without support for a wide variety of digital audio effects, it is unlikely
that procedural audio tools would be used in any meaningful way by modern video
game audio developers.

2.2.3 Audio Organisation Protocols

Alongside the development of digital audio synthesis and effects for audio creation,
a number of audio organisation protocols have been developed in order to facilitate
the creation of audio in a digital environment. The most popular of these
organisation protocols for digital audio is the MIDI protocol. The MIDI protocol
was introduced to the digital audio market in 1982 by Roland, a synthesiser
and audio hardware company, and quickly became the industry standard way
to communicate digital audio event and parameter data. MIDI is a powerful
communication protocol for music and is also a lightweight protocol (MIDI files
are often less than one kilobyte in size). MIDI was used extensively in game audio
alongside FM synthesis in the late 1980s and early 1990s. The use of MIDI in game
audio applications declined with the introduction of CD audio, but MIDI is still a
popular musical organisational standard used by composers when writing music
in DAWs and musical notation software. A modern resurgence of interest in the
use of MIDI in game audio is currently taking place, with recent games such as
Peggle Blast Two [22] and the upcoming Lambchild VR finding ways to integrate
MIDI into their audio workflow. The modern interest in MIDI has aligned with a
surge in games using procedural audio techniques, and MIDI is functioning as a
powerful tool for organising procedural audio due to its flexible nature and low
storage requirements. While MIDI usage for procedural audio is becoming more
popular, available tools for the integration of MIDI into a modern game audio
workflow are severely limited. This lack of tools has limited the number of modern
video games that utilise MIDI. A further discussion of MIDI implementation in
video games occurs in our discussion of game audio tools in section 2.4.

The creation of audio organisation protocols for the utilisation of audio effects and

2.3. ALGORITHMIC COMPOSITION 17

audio synthesis in a digital audio environment has become an important part of
the digital audio ecosystem. A modular approach to digital audio synthesis and
effect tools has developed, in which plugins are developed for use in digital audio
workstations. A collection of file formats for the creation of synthesis and effect
plugins for DAWs has been developed, the most significant being:

• AudioUnits: These work exclusively on Apple devices running OSX or iOS
operating systems and make use of the Apple core audio and core MIDI
frameworks.

• RTAS and AAX: Formats exclusive to the DAW Pro Tools. AAX is the current
Pro Tools standard and has become a popular audio plugin format for the
creation of audio tools for film and television audio.

• VST: VST (Virtual Studio Technology) is a plugin format created by Steinberg
Audio. They are available cross platform for Linux, OSX, and Windows and
are commonly used across most major DAWs.

While these standardised protocols exist for use in DAWs, there is no standardisa-
tion of plugin formats in game audio, and attempts to address this issue have never
been fully realised. (The Fabric audio system includes a partial VST implementa-
tion, but its use is extremely limited and it cannot currently be compiled for use in
game builds.)

Digital audio effects, synthesis, and organisational protocols have significantly
affected the way in which game audio has developed. Audio synthesis via FM,
wavetable synthesis, and MIDI musical organisation, were common in early games,
yet the field changed throughout the 1990s due to advances in digital audio
technology and audio effects and the playback of audio files rose in popularity.
While many techniques from digital audio synthesis, effects, and organisation have
significant historical usage in game audio, the current popular game audio tools
often lack support for a number of significant digital audio techniques.

2.3 Algorithmic Composition

Due to its non-deterministic nature, algorithmic composition is an important field
to explore when discussing procedural audio tools for video game development.
Music theorist A. Alpern defines algorithmic music as the “process of using
some formal process to make music with minimal human intervention” [23]. As

18 CHAPTER 2. RELATED WORKS

algorithmic composition on computers grew as a field through the 20th century,
distinct compositional approaches became apparent. These distinctions led to
a categorisation of algorithmic musical generation by Maurer in 1999 which we
utilise in this thesis [24]. Maurer’s work splits algorithmic composition into three
main categories: stochastic composition, rules-based composition, and artificial
intelligence (AI) in composition. The following sections describe each technique
and explore their game audio applications.

2.3.1 Stochastic Composition

Stochastic composition is the use of random processes for the generation of musi-
cal material. This includes simple non-weighted random processes, and extends
to more complex examples using techniques such as Markov models. Early non-
digital examples of stochastic composition include Mozart’s 1787 Musikalisches
Wurfelspiel (Dice Game), a work that used dice rolls to determine the organisa-
tion of a number of short musical phrases. Another example can be found in com-
poser John Cage’s 1968 work Reunion. The work uses an electronically altered chess
board upon which the players’ chess moves trigger sounds that form the composi-
tion. In video games, the previously mentioned 1984 game Ball Blazer is an example
of a game making use of a stochastic, non-weighted algorithm to create music.

Figure 2.5: John Cage’s Reunion being played on an electronically altered

chess board

Extended forms of stochastic composition include the use of Markov models to
generate music. Markov models have been used extensively in the realisation of
algorithmic composition and were a core technique used in the first piece of music

2.3. ALGORITHMIC COMPOSITION 19

ever created on a computer: Hiller and Isaacson’s 1957 Illiac Suite. The technique
was explored by Iannis Xenakis in his book Formalised Music [25], where he wrote
about the use of Markov models to determine the frequency, duration, and intensity
of musical notes. Further theoretical development of Markov models for musical
organisation occurred in 1987 when Polansky, Rosenboom, and Burk described a
musical organisational structure using Markov models that included both a fine
detailed model to determine individual note choices, and a higher-level Markov
model to determine changes in musical form [26]. More recently the combination
of Hidden Markov models with large databases of composition as input data has
been utilised to reproduce new compositions in the style of Bach chorales [27] and
jazz improvisations [28].

While the use of Markov models in video game audio is an uncommon technique,
an example can be found in this thesis’s author’s 2016 video game Swim Swim
Swim [29]. The game uses a second order Markov model to determine melodic pitch
choices, and is weighted through the analysis of an input composition. The video
game Spore [13] also utilises Markov models alongside rules-based techniques, and
will be explored further in the following section. An image of gameplay from Spore
can be seen in figure 2.6.

Markov models are highly suited to the composition of music, particularly in the
creation of melodic material. This is due to their ability to closely mimic style in
linear phrases, while still achieving a high level of variability (depending on the
order of the Markov model used and the amount of training data used). They are
commonly more musically flexible than rules-based systems, and more consistent
in their creation of aesthetically sensible musical results than self-teaching AI
models.

2.3.2 Rules-Based (or Formal Grammar) Composition

Rules-based and formal grammar algorithmic composition is the use of rules,
usually derived from music theory, in order to compose music. Prominent historical
examples include a program written by William Schottstaedt in 1989 that generates
polyphonic composition based on the counterpoint music of Palestrina. The
program uses 75 music theory rules to construct compositions. Mathis Lothe’s
1999 paper, “Knowledge Based Automatic Composition and Variation of Melodies
for Minuets in Early Classical Style”, explores the application of formal grammar
composition in order to create minuets in the style of Mozart [30]. Lothe’s system

20 CHAPTER 2. RELATED WORKS

makes use of rules that determine the composition at a micro note by note level
and at a macro level that determines musical structure. Often the musical output of
rules-based composition can be difficult to distinguish from that of Markov model-
based composition [31], and Loth’s use of micro and macro approaches to musical
composition closely resembles those proposed by Polansky, Rosenboom, and Burk
[26] for application in Markov model composition.

A prominent example of the use of rules-based algorithmic composition in a
video game is Maxis’ 2008 life simulation game Spore, which makes extensive
use of both rules-based and Markov model techniques [13]. The lead audio
programmer from Spore, Aaron McLeran, used rules derived from jazz theory and
counterpoint in order to create chord changes and to generate melodies. McLeran
also employed Markov techniques through the use of “tuned probability tables
using traditional music theory, including understandings of harmonic progression,
melody construction, rhythmic construction, and form construction” to generate
the audio for Spore [32]. Spore’s music is also synthesised in real-time, thus
fulfilling both A. Alpern’s criteria of algorithmic composition [23] and A. Farnell’s
criteria of procedural audio [1], and is a significant work in the history of game
audio development.

Figure 2.6: Spore gameplay example from ‘microbe’ section of game.

Audio in this section changes based on the evolution of the playable

creature

2.3. ALGORITHMIC COMPOSITION 21

2.3.3 Artificial Intelligence in Composition

AI in algorithmic composition refers to models that can create their own formal
rules or probabilistic weightings, rather than relying on pre-determined systems.
While we are unaware of examples of AI composition techniques being applied in
the context of video game audio, examples exist within the field of academic algo-
rithmic composition. David Cope’s Experiments in Musical Intelligence software
(EMI) makes use of its “output to compose new examples of music in the style of
the music in its database without replicating any of those pieces exactly” [33]. While
EMI is similar to Markov-based systems that make use of the analysis of a database
of compositions, Cope’s system can also take into account its own output in order to
form musical weightings in the future and can therefore, to a certain extent, shape
its own musical language.

Of the algorithmic composition categories introduced in this chapter, AI methods
of composition have the highest potential for variation through their ability to
‘learn’ and change as systems over time. While this is the case, they are generally
harder to develop than rules-based or stochastic systems. Also the learning part
of their system, if poorly developed, can quickly create music that would be
innappropriate for use in a game development context. For this reason, a large
amount of research into game play and AI composition would likely be required
before AI composition techniques could be successfully utilised in a professionally
released video game.

2.3.4 Summary

Each of the algorithmic techniques for composition explored in this section has the
potential to be applicable in game audio applications, yet much of the technology
required to enable the use of such techniques does not yet exist. Of the three
approaches explored, rules-based composition is the most strictly controllable, and
is therefore the most musically ‘safe’ algorithm presented. On the other hand, AI
models, while being capable of a great deal of musical variation, are potentially
difficult to use in a game audio context due to their unpredictability. The use of
stochastic models to generate musical material fills a niche between rules-based and
AI systems. While the use of stochastic Markov models creates rule-like systems,
their rules are generally developed through analysis of training material rather than
via strict enforcement by a composer. This leads to a higher degree of flexibility than

22 CHAPTER 2. RELATED WORKS

rules based systems with less potential for unexpected results than an AI-based
approach.

2.4 Audio Tools Development for Video Games

Video games are a diverse art form that brings together a number of disciplines
including programming, visual art, narrative design, sound design, and composi-
tion. In order to facilitate this inter-disciplinary communication, a huge variety of
pipelines, tools, and standards have been created. This section will primarily dis-
cuss tool-based solutions that address workflow problems in game audio. In early
game audio development during the 1970s and 1980s, programmers were often the
only people that worked directly with game code, and artists would deliver assets
to be transcribed into the engine by the programmers. Composer Yuki Takenouchi
describes a historical process in game audio where he would write music and then
hand it over to a programmer to transcribe it into code, to approximate the com-
posers’ output [34]. This approach had the disadvantage that composers and sound
designers did not have direct control over how their audio would sound. Since that
time, game audio tools developers have worked to create audio pipelines that re-
duce reliance on programming when working with audio in video games.

As audio technology improved over the last 40 years, so did game audio workflows
and with the introduction of FM synthesis in video game consoles in the late 1980s
came a number of game audio tools. A significant new tool was iMuse from
LucasArts. Created in 1992, iMuse brought together a MIDI-based approach to
musical organisation with FM synthesis, and was a versatile music creation tool
for interactive audio creation. iMuse allowed for vertical re-mixing, horizontal re-
sequencing, and transitionary organisation of musical material written in MIDI,
and far surpassed the game audio engines at the time in terms of its flexibility and
features [34]. A key part of the iMuse system was that music could be composed by
a non-programmer and then integrated by an audio implementer with knowledge
of SCRUMM (LucasArts’ game development programming environment).

The 1990s also saw the arrival of a new concept in game tools development: the
‘game engine’. Henry Lowood traces the first use of the term ‘game engine’ to the
development of the 1993 game DOOM [35] and its development tool the DOOM
Engine [36]. The DOOM team’s innovation lay in their approach to organising
game making tools. The DOOM Engine developers separated the core code

2.4. AUDIO TOOLS DEVELOPMENT FOR VIDEO GAMES 23

and technical implementation of the engine from the art, music, and other non-
programmatic assets, thus creating a game development environment that both
programmers and non-programmers could work in together. The term ‘game
engine’ and the team’s approach to separating programming from assets in video
game organisation has gained significant popularity since its inception in DOOM,
and has become a standard practice in video game tool development. Significant
game development tools that use this organisational structure include the Quake
Engine, Unreal Engine, and Unity Engine, three of the most widely-used game
engines in video game development.

Figure 2.7: Image taken from DOOM’s gameplay, a game created with

DOOM Engine

The 2000’s saw a number of new tools and APIs for game audio. Key develop-
ments at the start of the decade included the release of a powerful C++ API for
audio: Open Audio Library (Open AL). Open AL is a multi-platform hardware ab-
straction layer API that became the major foundation for much of the audio tools
development and video game audio engines of the 2000s. Open AL was used in
historically significant games including 4 Unreal Tournament titles, Bioshock 1 [37],
and in Maxis’ Jedi Knight games. While Open AL is still being used in some modern
video game titles, new tools and workflows have taken precedence in game audio
development over the last decade.

The launch of the Apple App Store in 2008 led to a radical change in the video game
market as games for mobile phones became increasingly popular and numerous. In

24 CHAPTER 2. RELATED WORKS

the same year the Danish company Unity Technologies released Unity iPhone, a
version of Unity Engine 2 that supported targeting for iOS devices. Unity quickly
became the dominant game engine for mobile phone development, and it continues
to be one of the most popular game engines available. Unity Engine has also
become popular in the creation of non-iPhone games and, as of 2018, has multi-
platform build support for over 25 platforms. Like Doom Engine, Unity separates
code and in-game assets. The software achieves this through the use of a GUI-
based ‘editor’ and a C# scripting environment called Mono Develop. The Unity
editor allows users to create folder hierarchies for game assets to be used in game
development. The editor also includes two viewing panes, one that allows the game
developer to place game assets in a 2D or 3D environment, and one that shows
the scene as it will be viewed in-game. Figure 2.8 demonstrates one of the default
layouts of the Unity Editor, with the scene editor used for arranging objects shown
in the top left, the gameplay view pane in the bottom left, and the right-hand section
of the screen dedicated to file system access and game asset management. Unity
Engine’s audio system is written using the FMOD C++ library, which is a game
audio API for the development of interactive audio in video games.

Figure 2.8: Unity Engine editor with gameplay window in bottom left,

scene editor in top left, and folder hierarchy on the right

Another significant modern game engine is Unreal Engine, which has been in
continuous development since its initial release in 1998. Unreal Engine is similar
to Unity in its use of an organisational editor abstracted from its code, but rather
than using C#, Unreal Engine uses a mixture of C++ and its own custom developed
visual programming language: Blueprints. Unreal and Unity game engines are

2.4. AUDIO TOOLS DEVELOPMENT FOR VIDEO GAMES 25

significant development platforms for new audio tools, and a detailed discussion
of their audio systems can be found in Chapter 3 of this thesis.

FMOD, alongside being a powerful C++ audio library, is utilised in the software
FMOD Studio, a popular game audio middleware environment. Game audio
middleware, as previously discussed, is software that assists video game audio
designers in the process of designing audio behaviour in games. Middleware
generally supports the use of many of the interactive game audio techniques
discussed in section 2.1, alongside supporting a variety of audio effects. FMOD
Studio can be integrated into games developed in a number of video game engines
including the Unity and Unreal engines, and effectively replaces the in-engine
audio tools and audio rendering pipelines of a game engine. Another significant
audio middleware tool is Audio Kinetic’s Wwise. Similar to FMOD, Wwise can be
used as a C++ library, or as a full middleware solution with a graphical interface.
Wwise includes a number of similar features to FMOD, and an in-depth discussion
of the technical differences between audio in Wwise, FMOD, Unity, and Unreal
will be covered in the following chapter of this thesis. These four game audio
environments dominate game audio tools and it is rare to find current discussions
of modern audio middleware and game engines that do not focus heavily on at least
one of these four technologies [38] [39].

An important feature of Unreal, Unity, Wwise, and FMOD is that they are all
extendable through the creation of new game audio tools. Similar to the use of
VSTs and other plugin formats in DAWs, Wwise and FMOD each have a plugin
development format for the development of new audio effects and synthesis tools.
Unity and Unreal also allow users to extend upon their audio engines in a variety
of ways. Unreal Engine is open-source and developers can change any part of the
Unreal audio system to suit their game, but the engine developers offer significant
support for the creation of audio plugins and tools with a mixture of blueprints and
C++ [40]. Unity, on the other hand, is not open source, yet developers can create
new plugins and audio behaviour in C#, or through the creation of dynamically
loaded libraries that can be written in a variety of programming languages. Popular
examples of tools developed using engine and middleware plugin interfaces
include the McDSP plugins for Wwise, Google’s resonance audio (3d audio library)
which runs in all four environments, and G-Audio, an audio sequencing tool for
Unity Engine. Another significant game audio tool is Tazman Audio’s Fabric.
Fabric is a Unity-only audio tool and supports many of the techniques available
through Wwise and FMOD. Fabric blurs the line between game audio middleware

26 CHAPTER 2. RELATED WORKS

and a plugin tool as it is Unity-specific and utilises a number of features from
the pre-existing Unity audio and editor systems while also adding new features.
Although all of the audio tools discussed here have support for plugins for audio
effects, there is no standardised format for these plugins. Developers of tools that
work across multiple game engines and audio middleware systems must create
different versions of their tools for each software. Also, of the major game audio
middleware and game engine solutions listed, only Wwise currently supports the
use of MIDI. This is a significant problem for developers of procedural audio for
video games as new tools and audio organisation protocols must be learned or
developed each time that a new game engine or audio middleware is used. This
often constitutes an unreasonable amount of work and may reduce the likelihood
of game audio developers turning to procedural audio as a solution.

Another important technology in game audio tools development is the use of audio
software from non-game contexts in the real-time audio pipelines of games. An
example of this is the use of the music visual coding language Pd in video games.
Pd, as first discussed in section 2.2, is a powerful tool for the development of
algorithmic music and audio synthesis and was developed by Miller Puckett after
his creation of Max. Pd first became accessible for use in game development with
the release of LibPd, which is a C tool that allows Pd patches to be run without
their GUI on any device that can run native C and C++ code. LibPd has gained
success in mobile applications, and has been used in a small selection of video
games including Phosfiend System’s music game Fract Osc [17]. While LibPd has
become a popular and important piece of software for video game audio, problems
with its CPU usage and with latency have limited its use in video game audio [41].
The 2008 game Spore [13], as discussed in sections 2.1.2 and 2.3.2, also made use
of Pd as part of its real-time audio tool chain. This enabled the exploration of a
number of algorithmic techniques that benefit from Pd’s rapid DSP development
paradigm.

As of late 2016, Pd implementation in video games has become significantly easier
and more efficient through the efforts of UK company Enzian Audio and their tool
Heavy [42]. Heavy is an online tool that allows users to upload and convert Pd
patches into optimised native C or C++. Enzian have also created a number of
tools to enable users to embed their Pd patches as plugins into different pieces of
software on a range of platforms. Examples include the creation of VST2 plugins
for use in DAWs, a Unity convertor that makes Pd patches appear in Unity’s editor,
and a Wwise plugin implementation. The technical aspects of Pd programming and

2.4. AUDIO TOOLS DEVELOPMENT FOR VIDEO GAMES 27

its use in game audio tools will be further explored in section 3.4 in the following
chapter. While a range of game audio tools currently exist, their supported features
are often far surpassed by many tools available for linear audio creation in DAWs.
Many of the standard tools and formats used in DAWs cannot easily be used in
game audio applications, and this thesis works to address this shortcoming.

With a survey of related works complete, we draw from research undertaken in this
chapter in order to develop technical criteria for use in the development of game
audio tools in the following chapter. We then prototype procedural audio systems
with the use of software and techniques introduced throughout this chapter.

28 CHAPTER 2. RELATED WORKS

Chapter 3

Preliminary Development

This chapter examines methods for achieving procedural audio in a range of
game development environments through the use of a rapid prototyping design
paradigm. The information presented in this chapter is used to inform the creation
of the new tools documented in Chapter 4 and to ensure that planned developments
have not been achieved by other software. Throughout this chapter, a collection
of applications across various game audio environments is developed. These
applications are generally small tests to determine whether software meets certain
technical baselines. On occasion, more extensive applications are developed with
the goal of understanding nuanced software behaviour.

Section 3.1 of this chapter defines a set of design criteria and technical baselines
against which to test procedural audio tools for game development. Section 3.2
explores the audio capabilities of significant modern game audio middleware and
game engines and documents their suitability in a procedural audio setting. Section
3.3 expands the exploration into retro game audio technology, and looks at ways in
which audio synthesis and audio organisational protocols utilised in retro game
audio technology can inform modern procedural game audio systems. Finally,
section 3.4 explores the use of the audio programming environment Pure Data in
video games, and looks at ways in which it can be used to bridge the gap between
retro and modern game audio technologies. Through each of these sections,
methodologies for the creation of procedural audio tools are developed, and a map
of tools and techniques for procedural audio development is established.

29

30 CHAPTER 3. PRELIMINARY DEVELOPMENT

3.1 Technical Requirements

Through our exploration of audio tools development and related fields, a lack of
audio tools and standards for use in procedural game audio has become apparent.
In Chapter 1, we identified a selection of evaluative criteria for procedural audio
tools that must be met in order for us to successfully meet research requirements.
In this section, we extend upon our initial criteria and develop a set of technical
evaluative criteria against which to test procedural game audio tools. In order for
such tools to be considered technically successful in the context of this thesis, they
should:

1. Use standardised audio organisational protocols from DAWs, such as MIDI,
wherever possible. This ensures that tools are accessible to audio designers
with DAW experience, and reduces development time whenever pre-existing
protocols are utilised.

2. Achieve a level of time accuracy that is consistent with professional audio ap-
plications. Audio signal time inaccuracy should ideally not exceed 5 ms (220.5
samples at a sample rate of 441001), the minimum audible threshold for percus-
sive time inaccuracy. Signal timing should never exceed the maximum human
threshold for audible non-percussive time inaccuracy of 30 ms (1323 samples).
Both threshold values are taken from Helmut Haas’s dissertation on psychoa-
coustics from 1949, a formative text on human auditory perception [43].

3. Be capable of either real-time DSP, or of interfacing with tools that support real-
time DSP. This is an essential requirement of a procedural audio system as signal
processing is required in both effect processing and in audio synthesis.

In our exploration of game audio technology in the rest of this chapter, we
examine software in relation to both the technical guidelines above and evaluative
criteria from Chapter 1. While in many circumstances understanding whether
software tested meets evaluative criteria is possible through prototyping and the
use of documentation, the quantitative testing of audio timing inconsistencies of
each system required the development of a custom testing methodology. The
need for this methodology became necessary after casual listening tests indicated

1Note that we use the terms ‘sample’ or ‘samples’ to refer to floating point values between -1.0 and
+1.0 that represent signal amplitude. In the context of this thesis, digital audio signals are always
discretely sampled at 44100 samples per second (the industry standard audio sample rate) unless
otherwise stated

3.1. TECHNICAL REQUIREMENTS 31

the existence of timing inaccuracies across a number of significant game audio
tools.

In the developed test, clicks are sequenced at 120 beats per minute (BPM) in each
piece of software tested (120 BPM is the default tempo used by most DAWs).
All generated audio utilises the industry standard sample rate of 44100 samples
per second. In each tested application, we attempt to place an amplitude +1.0
pulse at sample positions zero and 22050 of each second (thus achieving 120
BPM) over a five second duration. The resulting audio is recorded into the
DAW Reaper via the audio routing software SoundFlower [44], and is edited so
that the first generated impulse signal occurs at sample position zero. Audio is
then rendered and imported into a custom testing application developed in the
audio programming language ChucK, which checks for time-inaccuracies in the
generated audio files. ChucK is chosen as the analysis environment as it is a
‘strongly timed’ programming language that supports audio analysis at a sample
level [45].

The ChucK time inconsistency test, which can be seen in its entirety in listing 3.1,
uses an amplitude threshold of 0.7 (a value chosen to filter out any noise or re-
sampling artifacts present), set in line 2 and tested against in line 13, to test for time
inaccuracies via checking the distance between impulse signals. The code updates
at the sample rate, as seen in line 21 of the listing, and when a click event occurs,
the code prints the number of samples of inaccuracy (if any) that are present. If
the mean time inaccuracy over five tests ever exceeds 220.5 samples (5 ms), then
the source application does not meet ideal time accuracy requirements. If the mean
time inaccuracy ever exceeds 1323 samples (30 ms), then the application is unusable
in the development of procedural audio (as defined by our criteria in section 3.1).
If the system presents no timing inaccuracies at a sample level (i.e. 44100th of a
second) in any tests, then we consider the system to be ‘sample-accurate’, which is
the highest degree of time accuracy possible in a discrete digital audio system.

With technical requirements in place and a test for sample accuracy developed, we
go on to document our tests of game audio environments.

32 CHAPTER 3. PRELIMINARY DEVELOPMENT

3.2 Procedural Audio Techniques in Game Audio

Environments

This section explores the creation of procedural audio in modern, popular game
audio development environments. Through the exploration of game audio tools
in Chapter 2, four pieces of software emerged as forerunners in popularity, multi-
platform support, and flexibility in game audio creation. These are the game
engines Unity and Unreal Engine, and the audio middleware environments FMOD
Studio and Wwise. In our exploration of these environments, we document
whether they meet or fail the technical requirements listed in section 3.1, and
we examine the viability of developing audio tools to support procedural audio
synthesis in each environment. In order to test their capabilities, we create small
prototype applications in each environment.

1 "/foo.wav" => string waveFile;

2 0.7 => float gateThreshold;

3 SndBuf sound => Gain g => dac;

4 0 => int numSamples;

5 0 => int numMs;

6 0 => int sampAim;

7 me.dir() + waveFile=>sound.read;

8 0=>sound.pos;

9
10 while(1)

11 {

12 //if audio exceeds gate threshold then print position

13 if(Std.fabs(g.last()) > gateThreshold)

14 {

15 //samples since system start minus sample aim

16 <<< numSamples - sampAim >>>;

17 sampAim + 22050 => sampAim;

18 }

19 //sample level update

20 1::samp => now;

21 numSamples++;

22 }

Listing 3.1: ChucK program for testing sample accuracy

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS33

3.2.1 FMOD Studio

As discussed in our exploration of game audio tools on Chapter 2, FMOD is a C++
library which is utilised by the audio middleware FMOD Studio. Here we focus
on the middleware aspect of FMOD, and look to the C++ library when extended
features are explored. FMOD Studio was commercially released in 2013, and is a
GUI-based middleware application that can be used to organise audio content for
video games. FMOD’s GUI is similar to that of a DAW, but many of the tools and
features available in FMOD Studio differ from those commonly found in DAWs.
While, like a DAW, FMOD Studio can be used to organise audio clips on a timeline
and to apply effects and automation to signals and parameters, FMOD does not
support audio editing of waveforms and does not support MIDI. On the other hand,
FMOD Studio includes a number of features that are not found in a DAW. While
a DAW fundamentally allows us to render audio and MIDI files, FMOD Studio’s
main design paradigm features the creation of dynamic libraries as plugins. These
dynamic libraries bundle audio files alongside logic and audio effect code in a
way that can be used by a number of game engines. Once FMOD Studio files are
included in a game project, the game engine can make calls to the compiled FMOD
Studio project. Communication between a game engine and FMOD Studio occurs
through the use of real-time Parameter Changes (RTPCs). RTPCs are parameters
created in FMOD Studio that represent the game state of the parent game engine.
Using these RTPC values, FMOD Studio can set up behaviours to be applied in
game. For example, an RTPC called ‘health’ could be created which is fed values
by the game engine representing the health of the player. In FMOD Studio, the
RTPC could then, for example, be attached to a lowpass filter’s cutoff frequency.
As the player character’s health approaches zero, a lowpass filter is manipulated
programatically, thus giving an audible indicator of game state. The use of RTPCs is
central to the design of FMOD Studio, and can be applied in a variety of game audio
contexts. Common uses include determining the volume of vertically re-mixed
layers of audio, triggering changes of looped audio with horizontal re-sequencing,
and layering ambience files based on game state.

To test the accuracy of FMOD Studio’s timing system, we sequenced click wavefiles
in the FMOD Studio editor at 120 BPM and recorded them with our ChucK time-
accuracy test. Our results show FMOD Studios output as sample accurate to the
44100th of a second, making it a highly suitable environment for working with
strongly timed audio content. The test can be seen in figure 3.1, which shows a
looped 500 ms audio file with a click at sample position 0. FMOD Studio does not

34 CHAPTER 3. PRELIMINARY DEVELOPMENT

Figure 3.1: FMOD audio sequencing timing test. Note that a one-sample

click is present at the start of the looped waveform but is not visible due

to the resolution of the GUI

support the play back of MIDI files or the use of audio synthesisers. While this is
the case, the FMOD C++ library supports the loading and playback of pre-rendered
MIDI files, and these can be sequenced in time with the FMOD low-level timing
system utilised by FMOD Studio. In order to achieve this behaviour, a MIDI file is
loaded as a stream into the low level FMOD API, and is then scheduled with the
FMOD call System::playSound.

In order for this function to play MIDI files, a Soundfont Two (SF2) file can be loaded
or audio can be routed via the MIDI output of the application to a seperate system.
While these features are supported by FMOD’s C++ API, documentation of their
use is scarce and the use of FMOD for the creation of a procedural MIDI system
would likely require significantly more development time than is available to us
in this thesis. After extensive online searching, it appears that FMOD’s MIDI file
reading capabilities have not been used in a modern video game, and are a legacy
feature that is not under active development. The use of real-time MIDI sequencing
without the use of pre-rendered MIDI files is equally undocumented and rarely
used. Alongside FMOD’s minimal level of support for MIDI, neither FMOD Studio
nor FMOD C++ API support Open Sound Control messages.

FMOD Studio does have support for audio effects and the FMOD Studio download
comes with 23 different audio plugins including a limiter, pitch shifter, and binaural
spatialiser. Custom audio effects can be created as DSP objects via the FMOD C++
API and can be loaded into FMOD Studio. Full customised GUI creation is not

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS35

possible within FMOD Studio, but pre-existing GUI elements can be organised to
create plugin interfaces with limited flexibility. Crucially, FMOD Studio does not
support standardised audio plugin formats such as VST and Audio Unit, and there
are no external tools at this stage that support standardised plugin format use in
FMOD.

While FMOD Studio is a powerful and widely used environment for the design
of interactive game audio, its lack of GUI-level MIDI file playback, lack of audio
synthesis support, and inability to load standard audio plugin formats, make it an
ineffectual environment for the type of procedural audio development pursued in
this thesis. The development of procedural audio tools for FMOD Studio would
require large-scale development of new tools for MIDI, synthesis, and plugin
support, and would likely require access to the FMOD Studio source code, which is
currently closed-source. FMOD Studio is therefore an unsuitable environment for
the creation of procedural audio tools without the application of time and resources
that lie outside the scope of this thesis.

3.2.2 Wwise

Wwise, like FMOD Studio, is a GUI-based audio middleware software which is
coupled with a C++ programming API. While FMOD Studio strongly resembles a
DAW in its layout, Wwise uses a different approach to GUI design, and utilises a
large volume of windows and smaller tool interfaces that function in a modular
way. The Wwise editor is more feature-rich than FMOD Studio, and, due to its
extensive features, Wwise has become the standard game audio middleware for
many Triple-A game development studios. Wwise editor projects are compiled to
run as a plugin for game engines, and allow for the creation of elaborate interactive
audio system design for video games. Wwise makes use of RTPC variables to
interface between game engine and audio middleware, and the workflow is very
similar to that used by FMOD Studio. In order to test the time accuracy of Wwise we
use the looping audio tick test outlined in section 3.1. Wwise passes our test for time
accuracy and also proved to be sample-accurate to the 44100th of a second, making
it a suitable timing environment for the procedural audio development pursued in
this thesis.

Wwise goes beyond FMOD Studio in its support for MIDI file playback, and the
inclusion of a synthesiser plugin called Synth One. While at first glance Synth
One, paired with Wwise, fulfills many of the design criteria for a procedural audio

36 CHAPTER 3. PRELIMINARY DEVELOPMENT

environment outlined in section 3.1, there are a number of major limitations in its
use which we document below. Synth One, seen in figure 3.2, has two channels that
support pitched waveform synthesis, and a channel for noise synthesis. The pitched
waveform channels support the creation of sine, triangle, square, and sawtooth
waveforms, and the square wave’s duty cycle can be edited to create pulse wave
signals. The pitched channels can be transposed, allowing the use of simple two-
voice additive synthesis. The Noise channel’s only parameter is volume control.
The synthesiser does not have built-in filter capabilities for subtractive synthesis,
but can be used in tandem with Wwise’s built-in filter plugins to create subtractive
synthesis. In a similar way, amplitude LFOs are not supported by the synthesiser,
but automated volume modulation can be achieved in Wwise as an audio effect on
the synth audio channel. Synth One includes an ‘FM’ parameter that supports the
use of frequency modulation to the summed output of the three synth channels.
The FM parameter is set by the user, but does not support changes in frequency
modulation speed as a ratio of the note played (a common feature in commercial
FM synthesisers). Synth One uses a four state attack-decay-sustain-release (ADSR)
envelope for controlling volume with a fixed attack, decay, and release time and
fixed sustain amplitude, and these parameters can be set by the user.

While Synth One is a significant audio plugin in audio middleware, it lacks many of
the features of modern commercial software synthesisers used in DAWs. Its ability
to synthesise a limited number of audio signals and its lack of built-in filters or
filter enveloping means that Synth One is limited to playing audio that resembles
8-bit music and sound effects used in the game consoles of the 1980s. While the FM
parameter allows for some audio timbre creation beyond the capabilities of these
early game consoles, the lack of ratio-based control of frequency modulation and
the lack of internal parameter enveloping in the synth means that it is not well
equipped for emulating later FM audio technology such as the Sound Blaster FM
audio card and other standard MIDI chips of the late 1980s and early 1990s. Due
to the limitations in Wwise’s Synth One tool, we consider it to be ineffective in
attaining an acceptable level of features for modern audio synthesis, thus making it
unsuited to the creation of procedural audio in a modern game context.

Wwise supports the playback of MIDI files, which can be scheduled to play using
their interactive music editor window. Wwise does not include a built-in MIDI
editor and MIDI files must be pre-rendered before being imported into Wwise.
Because MIDI files cannot be changed in-editor, the algorithmic organisation of
procedural MIDI in Wwise’s editor is not possible. In discussions with Wwise’s

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS37

Figure 3.2: Wwise’s Synth One Synthesis Plugin

audio programmers, they mentioned that it would be possible to edit MIDI files
programatically using the Wwise C++ library, but they were not aware of any
projects actively taking this approach to creating audio using Wwise [46]. Like
FMOD Studio, Wwise does not include meaningful support for procedural audio
organisation. Vertical re-mixing, horizontal re-sequencing, and real-time mixing
of audio content are the true strengths of both pieces of software. In order to
develop tools for procedural audio generation in Wwise, a system to edit MIDI
files in real-time would need to exist. We chose not to pursue the development of
such a system as the Wwise programmers did not know of a clear way to achieve
real-time MIDI editing in Wwise. Also, in our experiments with the Wwise C++
plugin development API, we found it to be poorly documented and discovered few
examples of its use online, which promised to result in a restrictively challenging
development cycle.

3.2.3 Unity Engine

Unity Engine, as introduced in Chapter 2, is a widely used game engine and is
popular in the creation of mobile and indie games. While game developers working

38 CHAPTER 3. PRELIMINARY DEVELOPMENT

with Unity Engine generally use a GUI-based editor window to organise game
assets, much of Unity’s main features require the use of the scripting language
C#. In Unity, C# is often used as an abstraction layer to call C++ functions, and
this is the case for Unity’s audio system which makes use of a highly abstracted
implementation of the FMOD C++ audio API. While Unity Engine development
often takes place in C#, the Unity Engine C# library supports the creation of GUI
objects that can be viewed in the editor, and audio tools development for Unity
Engine often makes use of GUI development libraries to enable rapid development
of tools for non-programmers working in Unity.

Much C# programming undertaken in Unity Engine is written for use on the main
processing thread, which executes a function at the application framerate called
Update(). While the user can specify a target framerate (or use the default 60
frames per second), the final resulting framerate will fluctuate based on CPU usage.
Audio programming in Unity is generally done in the Update() function, and uses
a number of C# functions and classes that make calls to the FMOD C++ library. The
FMOD code is not directly accessible to Unity audio programmers, and is present
only as compiled binaries. Unity Engine supports the playback of audio files via
the C# function AudioSource.Play(). The AudioSource.Play() function can only
be called on the main thread (as opposed to the audio thread), and is tied to the
framerate. This can lead to a number of problems when accurate timing of audio
events is required. A frame rate of 60 frames per second (60 FPS) means that there
is a 16.6 ms delay between frames, but this delay can change based on the CPU
usage of a Unity application. Using the Update() function to drive a periodic audio
signal leads to significant audible inaccuracy, as seen in the graph in figure 3.3
which details mean time inaccuracies generated by the code in listing 3.2 across
five test iterations based on our test in section 3.1. The code presented sets an inter-
event delay time of half a second in line 3. The update function in lines 14 to 20
calls at the application’s framerate and is used to check if the current time exceeds
the next scheduled event. We also check whether the next scheduled tick event will
trigger before the next frame in line 16 through the use of Time.deltaTime which
returns the length of the previous frame in seconds and is used here to estimate the
length of the next frame. When the condition is met, the audio sample loaded into
audioSource is played in line 18 and a new event is scheduled half a second after
the previous event in line 19.

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS39

Figure 3.3: Mean sample inaccuracy from expected event timing us-

ing Unity Engine’s AudioSource.Play() method when tested via the

ChucK time-accuracy test in section 3.1. Mean time inaccuracy regu-

larly exceeds +-220.5 samples (5 ms), the human threshold for perceiv-

ing percussive time inaccuracy, but never exceeds the maximum accept-

able threshold for non-percussive signals of 30 ms (1323 samples). Note

that standard deviation is not shown as there was no deviation present.

Also note that the y-axis is measured in ’audio samples’: discrete audio

amplitude measurements that are accurate to the 44100th of a second (as

introduced in section 3.1)

40 CHAPTER 3. PRELIMINARY DEVELOPMENT

1 AudioSource audioSource;

2 private double audioPlayTime;

3 private double timeOffset = 0.5;

4
5 void Awake() {

6 audioSource = GetComponent<AudioSource>();

7 }

8
9 void Start() {

10 audioPlayTime = AudioSettings.dspTime;

11 Application.targetFramerate = 60;

12 }

13
14 void Update() {

15 if(AudioSettings.dspTime >= audioPlayTime ||

16 AudioSettings.dspTime + (Time.deltaTime / 2) >= audioPlayTime)

17 {

18 audioSource.Play();

19 audioPlayTime += timeOffset;

20 }

21 }

Listing 3.2: Unity code for 120 BPM metronome audio using framerate

Update() function

The results in figure 3.3 visibly alternate between being inaccurate in the positive
and negative direction as they fall on either side of the quantised framerate before
wrapping around on the ninth tick in every play-through. The results show the
existence of timing inaccuracy in relation to sample accurate timing of up to 400
samples (around 10 ms). They also show an inter-event time inaccuracy of up to
600 samples (around 15 ms) existing when the number of samples between events at
horizontal graph positions two and three are counted, and 600 samples is therefore
the audible maximum time inaccuracy of the Unity test application. Utilisation of
Unity’s AudioSource.Play() for the creation of procedural audio is therefore only
feasible when non-percussive signals are utilised, as its level of time inaccuracy is
under Haas’s threshold for audible time inaccuracy in such signals (as defined in
section 3.1).

Due to the amount of time inaccuracy present in the preceding test, we look to
other methods for achieving ideal time accuracy for procedural audio generation in
Unity.

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS41

1 private double startTime;

2 private const double timeOffset = 0.5;

3 private double nextScheduledTime = timeOffset;

4
5 void Start() {

6 startTime = AudioSettings.dspTime;

7 audioSource.PlayScheduled(startTime);

8 }

9
10 void Update() {

11 //if the current audio system time is within two frames of the next

12 //event then schedule the event.

13 if(AudioSettings.dspTime > (startTime + nextScheduledTime +

14 (timeOffset - Time.deltaTime * 2)))

15 {

16 nextScheduledTime += timeOffset;

17 audioSource.PlayScheduled(startTime + nextScheduledTime);

18 }

19 }

Listing 3.3: Unity code for 120 BPM metronome audio using

PlayScheduled(...) function

Unity also includes the function AudioSource.PlayScheduled(...), which allows
for scheduling of audio events at moments between visual frames. The code in
listing 3.3 is used to generate a 120 BPM audio signal. It updates offsets in a similar
fashion to the program in listing 3.2, yet rather than using the AudioSource.Play()

function, it instead uses PlayScheduled(...) (on line 17 of listing 3.3).

This code generates a completely sample-accurate result in all five sample accuracy
tests, and is therefore a viable way in which to schedule audio events in Unity.
Issues with the use of PlayScheduled(...) include the fact that it must be called at
least one visual frame before the audio event playback, as seen in lines 13 and 14
of the code listing, in order for the function’s event to occur. The function can also
only schedule one event at a time, and attempts to schedule multiple events with a
single audio source component will lead to the audio not being played. While the
use of PlayScheduled(...) allows for highly accurate audio timing in Unity, there
is no built-in metronome or music-focused timing system in Unity. Developers
utilising the function must therefore develop their own timing system that accounts
for framerate latency, a difficult programming task that would require an audio
developer who fills the role of a game audio programmer.

42 CHAPTER 3. PRELIMINARY DEVELOPMENT

The final way to schedule audio in Unity in C# is through the use of an audio
callback from hardware with the function OnAudioFilterRead(...). The use of
audio callbacks from hardware has become a standard way to implement sample
accurate audio in a digital environment, and requires a hardware audio clock that
buffers audio data, to be output at periodic intervals. The use of such a callback
allows us to write highly accurate and low-latency audio code. Each time that
the callback occurs, audio data in OnAudioFilterRead(...) is sent (via FMOD) to
the audio hardware for output. This creates a small delay between the calling of
the function and audio playback as the system must be at least one buffer behind
the output in order for the computer hardware to accurately output the audio.
Usual buffer sizes are 512 or 1024 samples per channel. The code in listing 3.4
demonstrates the use of OnAudioFilterRead(...) to generate an impulse signal
at 120 BPM. The program counts elapsed samples and, if the number of elapsed
samples exceeds 500 ms in line 12 of the listing, an audio signal is synthesised in
lines 15 and 18.

When tested with our ChucK time-accuracy program, the system in listing 3.4 is
sample accurate and therefore appropriate for accurately timed procedural audio
development. While this is the case, the use of audio callback sample-level
programming is an advanced programming technique, which is not accessible to
many developers. Also, the function uses more CPU resources than AudioSource.

Play() or AudioSource.PlayScheduled(). This extra CPU usage is due to the way
in which the audio source component makes use of Unity’s voice allocation system,
which controls the number of active streams of audio data being processed at any
one time. Voice streams each use a certain amount of CPU, and Unity generally
automatically removes each stream when no audio is being played through it.
Audio created via OnAudioFilterRead(...) is not organised by the Unity automatic
voice allocation system, and therefore a single instance of OnAudioFilterRead(...)
will use up a system audio voice for as long as the function runs. This can

use significantly more system resources than the main thread audio functions
previously discussed. OnAudioFilterRead(...) is also implemented in C# which is
a managed programming language in which memory management is automated.
This introduces a memory allocation pipeline and thread organisation system that is
not well suited to real-time audio synthesis. The non-suitability of C# memory and
thread management for sample level audio programming will be explored further
in chapter four in a discussion of audio programming paradigms in C, C++, and
C#.

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS43

1 private long sampsElapsed = 0;

2 long sr = 0;

3
4 void Start() {

5 sr = AudioSettings.outputSampleRate;

6 }

7
8 void OnAudioFilterRead(float[] data, int channels)

9 {

10 for(int i = 0; i < data.Length; i += channels)

11 {

12 sampsElapsed = sampsElapsed \% (sr / 2);

13 if(sampsElapsed == 0)

14 {

15 data[i] = 1.0f;

16 //if stereo output then copy left channel

17 //data to right channel

18 if(channels == 2) data[i + 1] = 1.0f;

19 }

20 sampsElapsed++;

21 }

22 }

Listing 3.4: Unity code for 120 BPM metronome audio using

OnAudioFilterRead(...) function

As of July 2018, Unity Engine does not include built-in support for audio synthe-
sis. In spite of this, the function OnAudioFilterRead(...) allows the creation of
filters and audio synthesis at a sample level with the use of custom digital sig-
nal processing code. The Unity documentation for the OnAudioFilterRead(...)

function includes code to implement a metronome with the use of a sinewave and
an attack-decay envelope and our testing code for OnAudioFilterRead(...) in list-
ing 3.4 demonstrates its use to synthesise basic impulse signals. While these tech-
niques are possible, OnAudioFilterRead(...) is often not a suitable tool for efficient
real-time audio manipulation due to voice allocation problems and difficulties with
achieving safe audio memory management in C#.

While Unity Engine does not support audio synthesis in any meaningful way,
it does support the use of audio effects through its audio mixer. The Unity
Engine audio mixer allows for a number of standard audio effects, such as chorus,
reverberation, delay, and basic high and low-pass filtering, to be applied to audio
signals in Unity. The audio mixer can also be extended through the creation of

44 CHAPTER 3. PRELIMINARY DEVELOPMENT

C++ plugins, via Unity’s Native Audio SDK. The SDK is a downloadable C++
template for the creation of audio plugins to be implemented in the audio mixer
and can be used to create synthesis effects and audio effects. The Native Audio
SDK includes a C++ audio callback function that allows for sample accurate audio
effect and synthesis programming with minimal latency. Problems with the Native
Audio SDK include its poor documentation and a lack of significant usage by the
community, leading to few skilled users being available to give advice on its usage.
It also lacks meaningful support for MIDI, Open Sound Control, or standard audio
plugin formats. Finally the SDK can only send floating point data to and from Unity,
and does not support sending string or byte data which is a problem when text
and raw data (such as parameters names and raw MIDI messages) need to be sent
between languages. Instead of utilising the C++ SDK for audio effect and synthesis
programming in Unity, we recommend the use of OnAudioFilterRead(...) inside
of Unity’s C# as explored earlier in this section, which supports C# access to
audio DSP callbacks. The OnAudioFilterRead(...) function is made particularly
powerful when combined with inter-programming language techniques, and its
use will be further explored in Chapter 4 of this thesis.

Unity Engine does not include support for popular audio organisation protocols
such as MIDI, OSC, or standard audio plugin formats. In spite of this limited
built-in support, each of these features can be achieved to a limited degree through
the use of external tools. In the early stages of this thesis, there were two tools
that supported the use of MIDI in Unity; MIDIJack, a Github project by Keijiro
[47], and Tazman Audio’s Fabric [48]. MIDIJack is a Unity plugin that supports
input from MIDI controllers and input from internal MIDI busses on OSX and
Windows computers. Fabric is a more robust solution that is both Unity plugin and
audio middleware. Fabric supports the playback of MIDI files, and can use MIDI
messages to trigger the playback of audio files and to transpose them, thus creating
a pitched sampler. Fabric neither supports in-tool MIDI editing nor editing MIDI
files at play time, and is therefore not appropriate for the procedural generation
of audio via MIDI. Fabric also includes a VST plugin loader that can be used on
Windows systems. The tool can import VST 2 plugins into Unity, but does not
support MIDI input, and can be used in the Unity editor, but not in applications due
to problems with its build code. During the early months of this thesis research,
OSC messages could be utilised in Unity via a GitHub library called UnityOSC,
created by jorgegarcia [49]. While external tools for MIDI, OSC, and audio plugin
loading exist for Unity, none presents a complete solution for the creation of

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS45

procedurally generated audio in Unity. In early 2018, a number of new audio tools
for Unity have become available. We will cover these in the conclusion section of
the thesis as they were introduced too late to contribute toward our research in
Chapter 4.

While Unity Engine fails to present any GUI-based tools for procedural audio
synthesis in video games, it does present a high degree of flexibility and ex-
tendability as a game audio development environment. Due to the existence of
Unity’s C# rapid GUI development tools, its ability to access audio callbacks via
OnAudioFilterRead(...), and the support for C++ extensions, Unity has significant
potential as a platform for procedural audio development, perhaps only rivaled by
Unreal Engine in its flexibility and extendability for developing new game audio
tools.

3.2.4 Unreal Engine

Like Unity Engine, Epic Games’ Unreal Engine is a popular game engine and is
frequently used in the creation of Triple-A, Indie, and Virtual Reality games. Due
to its widespread use and long history, Unreal Engine has detailed documentation
and a large online community of developers. Unreal Engine is open source and
is written in C++, yet much programming in Unreal Engine is done via Epic’s
Blueprints visual scripting environment. As a scripting environment, Blueprints is
powerful way to enable people without strong programming backgrounds to create
scripts in the engine.

Like Unity Engine, much of the scripting that takes place in Unreal Engine runs on a
thread that updates at the framerate. Blueprints scripts run via this method, which
means that accurate timing is difficult to achieve with the use of Blueprints alone.
The graph in figure 3.4 shows means and standard deviations of timing inaccuracies
in Unreal’s Blueprints over five iterations of testing via the audio timing tool
detailed earlier in this chapter. Figures 3.5 and 3.6 show the Blueprints visual scripts
used in the test. The first of these figures shows a blueprints function that has
a wave file containing a tick signal loaded into it. This function is called by the
script in figure 3.6, which uses the Blueprints Macro ‘Set Timer by Function Name’
pictured in order to call the function every 0.5 seconds. While the graph in figure 3.4
evidently shows that scheduling audio in Unreal using this built-in loop function is
not a feasible way to achieve ideal time-accurate scheduling of percussive signals
in Unreal Engine, it does present some interesting and unexpected results. In

46 CHAPTER 3. PRELIMINARY DEVELOPMENT

the graph presented, the tick event at tick five has a mean time inaccuracy of 0
over five tests. On further inspection, it was observed that, while the test returns
unacceptable levels of time inaccuracy with a high degree of standard deviation
in results, all timing inaccuracies are either a positive or negative multiple of 441
(10 ms), which is a 100th of the sample rate of 44100. We therefore assume that
Unreal Engine’s Blueprints’ ‘Play Sound 2D’ object quantises all audio output to
the 100th of a second, which, at 10 ms, is an undesired amount of inaccuracy for
procedural audio if percussive signals are to be utilised.

Figure 3.4: Mean and standard deviation of sample inaccuracy using

Unreal Engine’s ‘Set Timer by Function Name’ method when tested via

the ChucK time-accuracy test in section 3.1

The time inaccuracy found in our testing shows that the use of Blueprints for
procedural audio organisation is not a viable solution when accurate timing is
required. Initially we attempted to create an audio thread update function for
blueprints to remedy blueprints’ timing problems, but after conversations with
Epic’s then-recently-appointed lead audio programmer, Aaron McLeran in early
2017, we decided to abandon the idea [50]. McLeran explained that Blueprints is
built to work at the framerate update speed, and an attempt to add an audio-rate

3.2. PROCEDURAL AUDIO TECHNIQUES IN GAME AUDIO ENVIRONMENTS47

Figure 3.5: A function called PlaySound in Unreal’s Blueprints that plays

a ‘tick’ audio file when called

Figure 3.6: A macro in Unreal’s Blueprints that repeatedly calls the

PlaySound function every 0.5 seconds

48 CHAPTER 3. PRELIMINARY DEVELOPMENT

update function would need to be carried out by the internal audio team at Epic.
McLeran’s team has been steadily adding new features to the Unreal audio engine
throughout the period of this thesis, and Unreal’s audio system is significantly
more suited to procedural audio development now in mid-2018 than it was in early
2017.

While audio synthesis was not supported by the Unreal Engine main release
branch in early 2017, since that time audio synthesis capabilities have been added
[51]. Likewise, accurately timed audio was not possible without significant C++
development at the time of this investigation, yet it is now supported by the engine
[52]. At this stage MIDI, OSC, and standard audio plugin formats are not supported
in Unreal Engine. Unreal supports the use of audio effects through its Audio
Cues system and events created via Audio Cues can be scheduled to play from
Blueprints.

While Unreal Engine was not appropriate for procedural audio development in
early 2017, throughout the period of this thesis Unreal’s audio system underwent
large-scale changes, and Unreal Engine is now a powerful environment for pro-
cedural audio development. Due to these constant changes, Unreal was not a vi-
able choice for new procedural audio tools development in early 2017, as any tools
about to be created for this thesis in Unreal could have potentially been superseded
by those created by the audio team at Epic. While the development of procedural
audio tools by the Unreal audio team had the potential to supersede our own de-
velopments, we firmly believe that having a diverse range of tools for procedural
audio across multiple development environments is preferable to having no suit-
able tools, as was the case at the start of our thesis period.

3.2.5 Section Summary

While each of the game engines and audio middleware environments presented in
this section has many features for game audio development, none had meaningful
support for procedural audio in March of 2017. Middleware solutions FMOD
Studio and Wwise both support sample accurate audio, but are let down by
inflexible GUIs and limitations in their extendability. Unity and Unreal allow for
larger degrees of extendability, but have fewer audio features than the middleware
surveyed. Unity and Unreal Engines also require varying amounts of programming
knowledge on the part of their users, which makes them largely inaccessible to non-
programmers. All four tools surveyed, which are currently the most popular game

3.3. EXPLORATION OF EARLY GAME AUDIO SYSTEMS 49

audio development environments, lack meaningful support for audio synthesis,
and all but Wwise’s editor and Fabric for Unity lack support for GUI-based MIDI
file playback.

3.3 Exploration of Early Game Audio Systems

While section 3.2 shows that today’s popular game audio environments lack mean-
ingful support for composer, sound designer, and audio implementer-accessible
procedural audio, a number of game audio development tools and workflows pop-
ular in the 1980s and 1990s had significant support for techniques that are useful in
the creation of procedural audio. This section explores two such retro audio work-
flows in an attempt to gain insight into successful design paradigms for procedural
audio systems. While the technology explored in this section is no longer usable
in modern game audio development, we feel that it is important to study early ap-
proaches to game audio, as there are no modern procedural audio tools for games
that meet our design criteria. Our exploration of retro game audio tools and work-
flows is accomplished through the development of two systems for procedural au-
dio generation with the use of historical technology. In Section 3.3.1 we document
an audio system created to run on an NES console, a popular video game console of
the 1980s. In Section 3.3.2 we document a MIDI-based game audio system, which
emulates audio technology used in many 1990s video games. The strengths and
weaknesses of both approaches and their applicability in modern game audio tools
development is the focus of this section.

3.3.1 NES

This section details the development of a procedural audio system on NES, with
the goal of understanding approaches to the design of retro synthesis and timing
systems, and to apply knowledge gained in the creation of new game audio
tools later in this thesis. In conformation with historical workflows, we used a
composition and transcription method, as discussed in section 2.4, to write music
for the NES. In order to create music for the NES, we first wrote a short composition
using the software LSDJ. LSDJ runs on the Nintendo Gameboy console, and is
synthesis and sequencing ‘tracker’ software (an audio sequencer organised via a
vertical scrolling layout). While NES and Gameboy make use of different audio

50 CHAPTER 3. PRELIMINARY DEVELOPMENT

synthesis hardware (with the NES using a programmable sound generator (PSG)
RP2A03 chip and Gameboy using its main CPU to process audio), the audio output
and limitations to polyphony on each game console are closely related. Each is
capable of the playback of only four sounds at once, can use basic sampling, and
work primarily with basic waveform synthesis. In spite of these similarities, the
NES audio chip has a dedicated triangle wave channel that does not exist on the
Gameboy.

While the transcription could have been taken from music written in a DAW with
MIDI notation, we felt that writing the initial audio in LSDJ had a number of
advantages. The similarities of the NES and Gameboy audio systems meant that
we could explore extended timbre generation in LSDJ with the knowledge that such
effects were highly likely to be achievable on the NES. Also the timing subdivision
limitations of LSDJ are the same as those imposed by NES, therefore rhythmic
decisions made in LSDJ could be easily ported to NES.

Upon the completion of the LSDJ composition, an audio engine capable of re-
creating the composition on an NES console was developed. While much game
development for NES in the 1980s was accomplished using assembly language,
the game audio system presented here was created with the use of the NES C
library CC65. CC65 functioned as a programming abstraction layer, and enabled
rapid application development on NES, without the use of hardware-specific
assembly programming. In our exploration of the NES audio capabilities, we
were particularly interested in exploring how synthesised audio events could be
organised to work alongside gameplay. We were also interested in understanding
how audio synthesis was accomplished, and whether the design and organisation
utilised in the NES for audio synthesis could be applied in the development of the
game audio tools later in this thesis.

In order to gain knowledge of early approaches to audio synthesis in video games,
with the aim of applying them in modern game audio environments, we explored
ways in which audio synthesis was achieved on the NES console. Audio synthesis
on the NES required significant knowledge of the NES register layout and eight bit
operation codes. The code in listing 3.5 demonstrates the synthesis of a square-
wave signal in CC65. While the code presented utilises a number of low-level
programming techniques such as bitwise operations and direct pointer access, it
also uses abstraction in significant ways. An example of the use of abstraction can
be found in line 21 of listing 3.5 in which the note and envelope of the signal are set
via an eight-bit hexadecimal operation code.

3.3. EXPLORATION OF EARLY GAME AUDIO SYSTEMS 51

1 //pulse width setting

2 const uchar halfPulse 0x80;

3 //frequency set across two bytes. Grouped for readability

4 const uint16_t Ab2 0xE013;

5 //amplitude set to maximum

6 const uchar maxAmp 0x0F;

7 //envelope set in first nibble of byte

8 const uchar shortEnvelope 0x10;

9 enum {SQUARE_ONE, SQUARE_TWO};

10
11 void playSquare(uint16 note, uchar pulseWidth,

12 uchar amplitude, uchar channel, uchar envelope)

13 {

14 //set offset for pointer to register location

15 channel = channel << 2;

16 //set volume and pulse-width (NES pointer locations are uint16_t type

)

17 *((uchar*)(0x4000 + channel)) = pulseWidth | amplitude;

18 //set frequency

19 *((uchar*)(0x4002 + channel)) = (uchar)note;

20 //set octave and envelope

21 *((uchar*)(0x4003 + channel)) = envelope + (uchar)(note << 8);

22 }

23
24 //example of function call

25 playSquare(Ab2, halfPulse, maxAmp, SQUARE_ONE, shortEnvelope);

Listing 3.5: Square wave synthesis code on NES using CC65 library

The NES PSG chip has a variety of envelope lengths which can be set using the first
nibble at register locations responsible for determining the note envelope and an
example of its use can be seen in line 21 of the code listing. Amplitude can be set in
a similar way and the use of enveloping and amplitude functions means that audio
can change volume with a high degree of accuracy over time, without the need
for sample-level amplitude specification via code. The choice to use abstraction of
audio amplitude over time via presets, rather than user specification of amplitude
over time, reduces the parameter-space of the system, but also makes it significantly
easier to use. In our own tool development, determining the level of user control
over parameters of audio synthesis is a significant design concern that will be
further explored in Chapter 4. It is also important to note that all audio synthesis on
the NES is done via operation codes that control an audio synthesis chip separate
from the main NES CPU. This is a significantly different way of working with audio

52 CHAPTER 3. PRELIMINARY DEVELOPMENT

than that used in modern game platforms, where audio programming is commonly
written on the main CPU, and makes use of multi-threading in order to avoid thread
blocking problems with other game processes. This multi-threaded audio system
architecture will be further explored in Chapter 4.

Once functions to abstract audio synthesis had been put into place, we moved to
exploring the accuracy of audio timing on the NES. This was a significant area
of interest (as previously mentioned), as audio timing is an important part of our
design criteria, and exploring ways in which it was historically achieved and used
is useful in our own development of new time-accurate systems. On NES, the
main framerate update function that runs the game logic for NES games has a
high degree of accuracy, and so long as tempos used are a clean division of the
NES framerate then accurately timed audio is possible. The NES hardware does
not support an audio sample rate of 44100 Hz, so our single impulse audio file
could not be used to test the system. Also, the NES framerate of 60.0988 frames
per second meant that a 120 BPM pulse could not be accurately created. We also
found that periodically scheduled and programatticaly identical noise, triangle,
and pulse-wave signals have a different starting phase each time that they were
scheduled, which made it impossible to use gated signals to test the system for
sample accuracy. Due to these limitations and the difficulty of programming on
NES, we could not prove conclusively whether NES audio is sample accurate, yet
in an informal listening test we could not perceive audible timing fluctuations. It is
also important to note that the NES framerate is calculated as a division of the CPU
clock speed, and is therefore significantly more accurate than framerates used in
modern game environments, such as Unity and Unreal Engine, which do not rely
on strict hardware clock timing. Due to the lack of audible time fluctuations and
to the CPU-framerate dependency, we therefore infer that the NES audio system
achieves our design criteria of time accuracy.

While the system achieved our expectation for time accuracy, it was not able
to achieve other design criteria from our list in section 3.1. Standard audio
organisation protocols such as MIDI are not inherently supported on the NES. The
development of MIDI standardised organisation would have been useful in the
organisation of compositional material for our NES application, yet we found it
to be ultimately unnecessary due to strict constraints on storage and RAM, and
limited octave, rhythmic quantisation, channels, and amplitude possibilities. To
accomplish the organisation of audio events over time, we developed a sequencing
and looping system. Our audio system made use of a semiquaver tick as its smallest

3.3. EXPLORATION OF EARLY GAME AUDIO SYSTEMS 53

musical subdivision, which was a standard constraint in game audio systems of
the 1980s. Musical organisation was accomplished through the use of arrays of
notes for each musical phrase. Each array of notes was 16 semiquavers long, and
constituted one musical bar in 4/4 time. Notes were organised by pitch, amplitude,
and playback position, as seen in listing 3.6, which shows the programmatic
structure of an eight note phrase. The first element in each event description is
the pitch to be played, the second is the amplitude, and the third is the semiquaver
upon which to play the note.

1 uchar bossaBassA[][3] = {

2 {C3, 0x0F, 0x00}, {E3, 0x0A, 0x03},

3 {G3, 0x0F, 0x04}, {E3, 0x0A, 0x06},

4 {C3, 0x0F, 0x08}, {E3, 0x0A, 0x0B},

5 {G3, 0x0F, 0x0C}, {E3, 0x0A, 0x0E}

6 };

Listing 3.6: Organisation of musical data on NES with the use of 2D array

To organise each one-bar musical phrase, a higher level system of arrays was
utilised, with each array responsible for organising eight bars of audio. Finally,
a top level array organised these eight bar sections into songs. This use of three
levels of musical organisation for sequenced audio mimics the organisation used
in LSDJ, and is a standard approach to audio organisation in a ‘tracker’ style.
With these arrays in place, we could swap out musical phrase choices based on
game state changes in real-time, thus achieving limited procedural audio on the
NES. A block diagram outlining the layout of the overall NES audio system can
be seen in figure 3.7. The diagram presented shows that the game engines’ state is
used to control the algorithmic composition of phrases, which are then synced to a
metronome and synthesised.

The creation of an audio system on the NES console offered insight into the
early workings of interactive audio systems, yet many of these discoveries are
not applicable in modern game audio environments. The NES’s use of a PSG
chip for audio synthesis, rather than synthesis via the main CPU, means that the
synth design used on the NES is not directly applicable to an integrated modern
system. In spite of this, some of the audio synthesis functionality such as the use
of abstracted enveloping and parametric amplitude methods on the NES presents
applicable design patterns for use in modern game audio systems. Also the NES’s
framerate-based update function is significantly more time accurate than modern
game engines due to the way in which the framerate is scheduled as a direct

54 CHAPTER 3. PRELIMINARY DEVELOPMENT

Figure 3.7: Block diagram of data flow in NES audio system

division of the NES CPU’s clock. Finally, due to limitations in musical subdivision
imposed by the reliance on programming audio via a framerate update function,
and due to significant resource scarcity, the implementation of a robust audio
sequencing system, such as implemention MIDI file playback, was not feasible
on the NES. On the other hand, the sequencing system that we created with the
use of different layers of musical organisation proved to be a flexible and robust
organisation system for audio sequencing, and presented a number of useful design
paradigms that are employed later in this thesis.

3.3.2 1990s-Style MIDI System

In a further exploration of retro approaches to procedural audio in video games, a
game audio system for the sequencing of MIDI was created. MIDI is a widely used
protocol for the organisation of procedural audio, and this section will present an
overview of the MIDI protocol and explore its suitability for use in procedural audio
applications through the creation and evaluation of a MIDI-based game audio
system. The system created utilises the built-in MIDI synthesiser on a modern
desktop computer. MIDI is routed to this synthesiser from a custom-developed
MIDI sequencer, and this way of separating synthesiser and sequencer mimics the

3.3. EXPLORATION OF EARLY GAME AUDIO SYSTEMS 55

way in which computer audio systems of the 1990s worked with audio in games
such as Monkey Island 2: Le Chuck’s Revenge [7] via an external synthesis system.
The creation of the 1990s-style MIDI audio system presented provides insight into
musical organisation possibilities of MIDI-based game audio, and also exposes a
number of design limitations in the MIDI protocol which inform the creation of
procedural game audio tools in the following chapters of this thesis.

We chose to use the interactive programming environment Processing [53] and the
programming language Java for our MIDI music system. Java is well suited to the
rapid prototyping of interactive applications due to its large online community and
extendability as a language. Processing was chosen for the creation of our MIDI
system due to its user friendly programming interface and large online support as
a platform for visual and audio experimentation. We utilised an extended version of
Java, JavaX, which includes a MIDI library that supports the creation and playback
of MIDI files.

Audio synthesis in our 1990s-style MIDI game audio system is accomplished
through the use of the built-in synthesiser on modern Windows or OSX computers.
On current OSX systems, the built-in synthesiser is the DLS-Synthesiser, which
utilises MIDI input and an audio sampling format called Soundfonts in order to
generate audio. Modern Windows computers use the Microsoft GS Wavetable
Synth, which was created by Roland in 1991 and licensed to Windows in 1996, and
currently maintains the same Soundfont files of the original licensed synthesiser.
Soundfont files were a popular way to organise audio sample banks in game audio
of the 1990s, and their use in our application mimics the technology of the era.
The Soundfont synthesisers on Windows and OSX computers both make use of
MIDI input, and their sound banks and channels align with the 1991 General MIDI
(GM) standard, which assigns specific instrument tones to certain ranges of MIDI
messages.

In standard audio application programming, event scheduling with the use of
MIDI is generally accomplished in one of two ways: event scheduling for real-
time applications in which events are scheduled by an external or user-created
timing system, or event scheduling with the use of the MIDI file format, in which
musical event data is stored for playback. Our MIDI game audio system uses MIDI
organised with the MIDI file format, as opposed to using a custom MIDI clocking
system. MIDI, when used simply to describe event data without the full MIDI file
format, is expressed as three bytes of data. While these bytes can express a number
of musical parameters, a common usage is for the description of the start and end

56 CHAPTER 3. PRELIMINARY DEVELOPMENT

of a musical note event. [0x90, 60, 127] is an example of a ‘note on’ message in
which the first byte describes a ‘note on’ event, the second describes the note pitch:
60 or note C3 in 12-tone equal temperament (12tet), and the third is the amplitude,
in this case the maximum amplitude of 127. [0x80, 60, 0] is an example of a ‘note
off’ event, which is structured similarly to the ‘note on’ event but uses a first byte
of 0x80 and an amplitude of 0 in byte three to turn the note off.

With these two simple types of MIDI message a wide variety of musical expression
can be achieved. The MIDI file format utilises the organisation of musical events
in a similar way, but adds timing data to organise the playback of MIDI events.
This timing data can be expressed in pulses per quarter note (PPQ), which
allows for accurate time division based on a metronome pulse, or via the Society
of Motion Picture and Television Engineers format (SMPTE), an organisational
data format which uses standardised time-code data, and is not dependant on a
metronome.

Through the use of MIDI file playback in JavaX’s MIDI library, we were able to
import MIDI files created in a DAW directly into Processing, and to schedule their
playback in a way that mimics audio workflows used by the developers of Monkey
Island 2 with IMuse [7]. In our system, audio is organised into sequences that
are played with the Sequencer.Start() method and a vertical remixing system is
utilised to organise musical material via adding multiple musical layers to each
sequence. An important feature of our system was the creation of procedurally
generated audio content system in the form of a simplistic improvising instrument
voice. The instrument made use of a first order Markov model with weightings
assigned to notes of a blues scale, and was used to test the viability of MIDI file
usage in the development of procedural audio content. In order to facilitate the
editing of MIDI files, we implemented an ‘add note’ function. The function can be
seen in listing 3.7, and allowed us to specify the pitch, length, channel, and volume
of notes as parameter data (see lines 1 and 2 of the listing), and to add them to the
existing MIDI files via locking their PPQ to the existing clock (lines 8 and 9).

3.3. EXPLORATION OF EARLY GAME AUDIO SYSTEMS 57

1 private void addNote(Track track, int startTick,

2 int tickLength, int key, int velocity)

3 {

4 ShortMessage on = new ShortMessage();

5 on.setMessage(ShortMessage.NOTE_ON, 2, key, velocity);

6 ShortMessage off = new ShortMessage();

7 off.setMessage(ShortMessage.NOTE_OFF, 2, key, velocity);

8 track.add(new MIDIEvent(on, startTick));

9 track.add(new MIDIEvent(off, startTick + tickLength));

10 }

Listing 3.7: Playing MIDI notes in processing with the JavaX library

While the approach to MIDI track editing shown in listing 3.7 allowed the ordering
of procedural MIDI events, the track of ‘improvised’ messages had to be pre-
rendered before it could be played. This is due to the structure of PPQ timing in
MIDI files, which uses timing data of previous notes in order to determine the
timing of current events, and therefore the use of standard MIDI files with PPQ
timing is not suitable for low-latency real-time MIDI editing. In order to deal
with this limitation, we developed a double buffered system with MIDI tracks that
allowed us to procedurally organise MIDI messages. While the system allows for
the procedural organisation of MIDI data, it also relies on a large amount of latency
(up to eight bars of 4/4 timing) in order to function. This is due to limitations of
PPQ timing of MIDI files which means that MIDI tracks that are currently playing
cannot be accurately edited.

Our double-buffer system used two empty MIDI tracks, which are looped back to
back. We then schedule MIDI notes with the code in listing 3.7 in order to fill the
track that is not currently playing, thus creating procedural audio content. Every
time the track switches to the alternate track, all MIDI data contained in the recently
played MIDI track is deleted.

Like the NES audio system documented in section 3.3, the 1990s-style audio
engine presented here could not be accurately tested via our ChucK time accuracy
program. This is because it is not possible to load the single pulse wavefile into
the built-in synthesiser on OSC or Windows. Also, the Soundfont synthesisers
used on Windows and OSX computers use sample randomisation of repeated
samples which meant that we could not count the samples between consecutive
identical signals or accurately gate signals and measure sample timing between
peaks. In spite of these shortcomings, informal listening tests showed no audible

58 CHAPTER 3. PRELIMINARY DEVELOPMENT

jitter, and due to the widespread use of the JavaX MIDI library in interactive audio
applications and lack of documented timing problems online, we assume that
the system is accurate to within Haas’s 5 ms threshold for human audible time
inaccuracy [43].

The 1990s-style MIDI audio system created met a number of our design criteria:
the system utilised real-time audio synthesis, uses the standard audio protocols
of General MIDI and the MIDI file format, and is assumed to meet time accuracy
requirements. On the other hand, a number of significant design criteria could
not be met by the tool. While Processing is a popular environment for creative
coding, it does not contain many of the standard features of a game engine, and is
not a widely used tool for game development. Audio synthesis in real-time can
be achieved, but it utilises outdated methods that rely on built-in system MIDI
synthesisers that sound ‘old fashioned’ in a modern game audio environment.
Also, real-time changes in procedural audio content were not possible due to the
structure of MIDI files. We were highly aware of these limitations throughout our
development process, and therefore use the system created only as a prototype for
exploration of MIDI in video games from which to draw on later in this thesis.

3.4 Pure Data

With our exploration of historical and current applications of audio synthesis and
organisational protocols in game audio complete, we moved on to prototype a game
audio system for procedural audio that could be used in a modern game audio
environment. In order to undertake this development, the visual programming
language Pure Data (Pd) was used. While Pd has been used in the development
of game audio in the past, with titles such as Spore [13] and Fract Osc [17] using
Pd as their main audio development environment, Pd was never designed to be
a game audio tool. With the 2016 release of Enzian Audio’s Heavy, a library for
converting Pd patches into C for embedding in interactive applications [42], Pd
has become suitable for use in modern video game development and can now
be embedded as a native plugin into game development environments including
Unity and Wwise. Pd is powerful due to its suitability for rapid prototyping of
procedural audio behaviours and signal processing. It also has broad online and
in-application documentation which makes it an easy to learn tool.

Due to Pd’s flexibility in the creation of procedural audio, it was utilised to

3.4. PURE DATA 59

implement elements from our NES and Processing prototypes in a way that
was usable in modern game audio. The Pd tool created partially emulated the
NES audio system’s audio synthesis capabilities and used MIDI to organise note
playback, two techniques that are difficult to accomplish in modern game engines
and middleware environments. We chose to emulate these early game audio
systems in order to explore forgotten game audio paradigms, and also to enable
users to create retro-style game audio, which is becoming a popular game audio
aesthetic with modern game titles such as Shovel Knight [54] and Hyper Light
Drifter [55] utilising retro ‘chiptune’ style soundtracks.

In order to create a modern system in Pd that integrated strengths from both
contemporary and retro approaches to game audio synthesis, we created a real-
time wavetable synthesiser and used a number of wavetables sampled from an
NES console. Pulse waves at four pulse widths, a triangle wave, and noise signals,
all sampled from an NES, were utilised. In order to create different pitches using
the waveforms, we utilised an interpolating wave table look-up technique which
allowed us to keep a consistent sample rate of 44100 samples per second while
reading the waveform wavetables at different speeds. While this approach was
successful for the transposition of notes based on their fundamental frequencies,
notes that are synthesised at frequencies higher than the fundamental frequency of
the sampled wave used in our wavetable caused aliasing artifacts as their higher
harmonics exceeded the Nyquist frequency of our system. A standard technique
to solve this problem is the utilisation of a collection of single-period waveforms,
sampled at different frequencies, that can be changed between depending on the
note to be synthesised. When low notes are played, then harmonically dense
waveforms sampled at low frequencies are utilised, when higher notes are played,
then samples recorded at higher frequencies with less dense harmonic spectra
are used, therefore removing aliasing artifacts. While this approach would have
yielded the best results for our system, our Pd synth was a prototype, and the
creation of alias-free signals was out of scope in our prototype development phase.
On the other hand, realisations of aliasing problems in wavetable-based synthesis
informed our explorations of real-time audio synthesis in tool developments
documented in Chapter 4. The Pd GUI controlling audio synthesis can be seen
in figure 3.8, which includes GUI elements for controlling the lowpass filtering,
wavetables, low frequency oscillators, and enveloping of generated signals.

Alongside implementing basic synthesis features from the NES such as attack-
release envelopes, variable pulse width signals, a triangle wave, and noise syn-

60 CHAPTER 3. PRELIMINARY DEVELOPMENT

Figure 3.8: Synthesis GUI for Pd patch

thesis, features that extended the NES design based on common features of modern
synthesisers are included. The addition of a lowpass filter allowed us to use subtrac-
tive synthesis techniques to shape the tone of the synthesiser. The addition of low
frequency oscillators for pitch and frequency allowed parameter modulation and
through expanding the modulation speed range available our plugin can achieve
frequency modulation (FM) effects and amplitude modulation (AM) effects. We
expanded the attack-release two state envelope system from the NES by adding
sustain and decay parameters, thus implementing an ADSR envelope. The patch
uses a fixed sustain duration set to 0.2 seconds as scheduling note off-type events
was not practical with our GUI layout, but a more robust sequencing environment
would allow for more control over note lengths.

Figure 3.9: Sequencer section of Pd patch

Another significant feature of our Pd synthesiser was the use of accurately timed

3.4. PURE DATA 61

musical events that could be sequenced and looped with a high degree of rhythmic
accuracy. We used an event scheduling interface which controls audio in sixteenth
notes, and allowed for notes to be scheduled via a custom GUI, seen in figure 3.9,
with a MIDI link to the synthesiser section of the patch. The GUI pictured is
an eight by twelve matrix of toggle boxes with the vertical axis corresponding
to pitch (in 12 tone equal temperament from middle C in semitones). Horizontal
spacing represents time (in semiquavers), and the material sequenced via the GUI
is looped continuously in the style of a musical sequencer. Rather than utilising
the MIDI file protocol, we implemented our own real-time MIDI organisation that
bypasses problems documented in section 3.4 with real-time scheduling of MIDI
events using MIDI files. Through testing this Pd procedural audio tool with our
ChucK timing program, we found that our Pd application exhibits a small amount
of sample inaccuracy, but the amount is below the human threshold for audible
latency of 5 ms (220.5 samples), as can be seen in the graph in figure 3.10. The
graph, which plots mean time inconsistencies across five iterations of testing, shows
that while there is time inaccuracy, it complies to a predictable pattern of always
being slightly before the correct time (thus the negative values), and is all under the
human audible threshold of time inaccuracy. Control rate data in Pd is run every
64 audio samples and the data shown conforms to expectations associated with
such a system. With that said, the accuracy of of the Pd timing system created will
slowly move away from correct timing over time, and if played alongside a sample-
accurate 120 BPM signal, would eventually become out of sync with the signal. This
could be a problem if our system were to be used alongside other audio clocks, and
demonstrates a design flaw in the standard Pd audio timing design pattern.

The code in figure 3.11 was used by our system to organise audio events, and the
metro object pictured, which drives audio timing, was the standard timing tool
used in Pd development. While the metro object presented timing inaccuracies that
could become significant problems over long periods of time due to drift, Pd is
capable of sample accurate audio as documented by Eric Lyon in their paper “A
Sample Accurate Triggering System for Pd and Max/MSP” [56]. Lyon’s method
is applicable in the creation of time accurate event scheduling for use in Pd as a
standalone application, but it requires the use of an externally created Pd object
which is not supported for use in Heavy, and therefore is not usable in a modern
game audio context.

While our Pd tool met all four of our design criteria documented in section 3.1
to varying degrees, it also presented a fundamental problem that led us to pursue

62 CHAPTER 3. PRELIMINARY DEVELOPMENT

Figure 3.10: Mean audio timing inaccuracies in Pd procedural audio

system using metro object. This data is generated using the test in section

3.1 and shows a consistent negative drift present in the Pd metronome

object utilised. Note that standard deviation is not shown as there was

no deviation present

3.4. PURE DATA 63

Figure 3.11: Metronome that drives sequencer timing in our Pd prototype

different software solutions later in this thesis. Pd’s use of a graphical programming
interface made it very difficult to store large amounts of data. This includes the
storage of large transition matrices for Markov models, a useful technique for
creating algorithmic musical material as explored in Chapter 2 of this thesis. Pd’s
lack of control over memory allocation, in comparison to languages such as C++, C,
and C#, means that optimisation of resource intensive procedural audio techniques
including higher order Markov models and neural networks is inappropriate in
Pd. While the traditional approach to solving these problems for a Pd user would
have been to create a custom Pd object with the use of the Pd C object development
SDK, this was not possible in our application as the game-oriented Heavy library
used does not support the compilation of custom Pd externals. Another approach
would have been to embed resource-heavy procedural audio processes in the Game
Engine running the Pd patch, and then send data to and from Pd via MIDI or OSC.
This would likely have been a powerful procedural audio workflow, but once such
a workflow had been created, solutions that bypass Pd would quickly have become
preferable to the use of Pd. For example, Pd’s timing problems documented in
figure 3.10, which shows a steady drift away from correct metronomic timing,
could be bypassed with the creation of a sample accurate metronome and audio
organisation system in a programming language such as C, C#, or C++. If Audio
timing and algorithmic logic were moved into the game engine, Pd would only be
responsible for audio synthesis. While Pd’s audio synthesis is robust and easy-to-
use, we predict that the quantity of inter-language communication that would be
required in order to use such a system would have quickly outweighed the benefits

64 CHAPTER 3. PRELIMINARY DEVELOPMENT

that Pd brings.

3.5 Chapter Summary

This chapter has examined methods for achieving procedural audio in a range
of game development environments. Through our exploration of modern game
audio development environments, we found a distinct lack of support for important
features of a procedural audio system. In order to understand possible ways
to address these issues, we looked to retro game audio workflows of the 1980s
and 1990s, and became aware of a number of useful design paradigms for use in
procedural game audio tools creation. We went on to apply these findings to the
creation of a synthesiser and sequencer using the visual programming language Pd.
Our Pd patch fulfilled our design criteria, but failed to prove a robust environment
for more fundamental aspects of our research goals in terms of data organisation.
A summary of our findings can be seen in figure 3.12, which shows that at the time
of this investigation none of the game audio environments explored in this chapter
filled the gap in the field of procedural game audio tools. In order to address this
lack of support, the following chapter presents the development of two custom
tools for the creation of procedural game audio.

3.5. CHAPTER SUMMARY 65

Figure 3.12: A feature comparison of software examined in this chapter

66 CHAPTER 3. PRELIMINARY DEVELOPMENT

Chapter 4

Implementation

In the preceding three chapters, we have documented the lack of procedural
audio tools available to modern game audio developers. In order to address this
deficit, this chapter explores the development of two new tools for the creation of
procedural game audio. In section 4.1 we discuss the development of a new MIDI
tool for procedural audio development in Unity Engine which has the ability to
interface with existing audio systems on modern personal computers. In section 4.2
we focus on audio effects in procedural game audio and create a plugin hosting tool
that allows VST2 plugins, a commonly used audio effect plugin format in DAWs,
to be used in Unity. All game audio tools documented in this chapter are made
solely for use with Unity Engine, which is chosen as our development platform as
discussed in section 3.2.3. The tools have been released as open source code and are
hosted on github for public download [57][58].

In order to evaluate the tools developed in this chapter, two sets of evaluative
criteria are used. First, the set of high-level design criteria introduced in Chapter 1
are utilised. In summary, these criteria require that the tools developed are able to
create procedurally generated audio and that these tools be accessible for use via a
GUI or scripting API. The second set of evaluative criteria (detailed in section 3.1)
require that the audio tools developed achieve professional-level timing accuracy,
achieve real-time DSP, and use existing audio protocols when possible.

67

68 CHAPTER 4. IMPLEMENTATION

4.1 Tool 1: Unity MIDI System

The first tool created to support the procedural generation of audio is a library for
procedural MIDI manipulation in Unity. As discussed throughout the previous
chapters of this thesis, MIDI is a highly appropriate format for use in procedural
audio development, yet support for MIDI in modern game audio environments is
limited. In Chapter 3, two existing tools that utilise MIDI in Unity are introduced:
MIDIJack and Fabric Audio, yet neither tool allows for the algorithmic ordering of
MIDI messages in real-time, a core technique in procedural audio. In order to fill
this gap, a new Unity MIDI tool is created. The discussion of this Unity MIDI tool
is documented over the next four sections which each outline design concerns that
arise in its development. Section 4.1.1 provides a broad overview of the tool, section
4.1.2 discusses approaches to inter-programming language communication utilised
in the tool, section 4.1.3 compares the system created to existing MIDI tools, and
section 4.1.4 evaluates the tool’s success.

In order to meet general and technical design criteria, the MIDI tool created should
have the following technical attributes:

1. The tool should be able to read and play back standard MIDI files without error
at run-time.

2. The tool should be able to re-order MIDI messages in either a MIDI file or as
individual events at run-time without errors occurring, thus enabling the tool to
be utilised in the creation of algorithmic composition.

3. The tool should be able to schedule individual MIDI messages and MIDI tracks
for time-accurate play back (as defined in section 3.1) using Unity’s existing
audio timing system.

4. MIDI output by the tool should be routable to the software MIDI ports of a
modern Windows computer for external synthesis.

4.1.1 Overview of Tool

The MIDI library described in this section is developed to support the play back,
re-ordering, and dynamic creation of MIDI data in Unity Engine. The system is
developed across both C# and C programming languages and is split into two main
sections: a section that controls MIDI parsing and organisation, and a section that

4.1. TOOL 1: UNITY MIDI SYSTEM 69

controls the output of MIDI data. The diagram in figure 4.1 presents an outline of
the tool’s structure. As seen in the figure, a mixture of static and non-static classes
make up the C# section of the tool, with the static classes organising MIDI output
and general utilities and the non-static classes storing and organising MIDI data.
All blocks in the figure represent C# classes with the exception of the block titled
portmidi.dll. This block represents a dynamic library which exposes a variety of
functions from the C MIDI I/O library Portmidi [59] for use in Unity.

Figure 4.1: Block diagram and dataflow of Unity MIDI system

70 CHAPTER 4. IMPLEMENTATION

While our tool supports a number of methods of MIDI manipulation, a core feature
is its ability to play back pre-rendered MIDI files. In order to support the play back
of such files, we developed a MIDI file reader. In our file reader, MIDI files are
loaded into Unity via a loading component that is displayed in the Unity Editor.
Our custom-developed GUI for the component is shown in figure 4.2. The GUI
includes a field for loading MIDI files, a collection of toggles for controlling muting
and playback time, and two horizontal sliders that allow the setting of volume and
pitch offsets.

As MIDI files are loaded, we split them into individual MIDI track objects, each
consisting of MIDI message objects. Each MIDI file also includes a single MIDI
header to store meta-data about the MIDI file. MIDI headers are 14 bytes long and
store data outlining tempo, PPQ or SMPTE timing division, and MIDI file type.
Following a 14-byte header, the rest of a MIDI file consists of MIDI tracks. MIDI
files can have one or more MIDI tracks and each MIDI track consists of a short
header followed by MIDI event messages such as note on and note off messages
alongside meta events such as tempo changes and lyrics.

Figure 4.2: MIDI Source GUI in Unity that can load MIDI files and mir-

rors many of the parameters of the Unity AudioSource GUI component

for wave file play back

We store MIDI header data in a MidiFile object, which dynamically allocates
memory for each MIDI track based on metadata from track and file headers.
Individual MIDI tracks in a MIDI file are then stored via our MidiTrack class, with
each track containing a linked list of MIDI MidiMessage objects extracted from the
MIDI file coupled with meta-data from the MIDI track’s header.

One important feature of our MIDI file reading system is the way in which MIDI

4.1. TOOL 1: UNITY MIDI SYSTEM 71

message timestamps are stored. Our MIDI timestamps are stored as PPQ ticks since
the start of a MIDI file, which differs from the approach taken by the standard MIDI
file format. In the standard MIDI file format, MIDI event timestamps store the
amount of time in PPQ ticks until the next MIDIMessage message will occur. This
relative storage of MIDI timestamps based on inter-event timing means that the
MIDI file format can store timestamps very efficiently (the protocol utilises the least
number of bytes possible for every timestamp and often requires only one or two
bytes to store each value). While this is an efficient system, it can lead to problems
when real-time manipulation of MIDI data occurs. In such a system, individual
MIDI events cannot be scheduled to play unless the time until the following note
is known. This limits the feasibility of updating MIDI files in real time, and makes
traditional MIDI files a poor host for real-time procedural audio. This is the case
in video games, where a close synchronisation between audio and visual content
rules out the viability of large latencies between MIDI message writing and play
back.

The use of absolute timestamps in our MIDI library means that MIDI tracks can
be written and read in real-time. Our absolute timestamps are stored as 32-bit
integers, larger than the relative timestamps used in the MIDI file protocol, but
more suited to our utility. This increase in size is not a problem, as modern personal
computers have exponentially more RAM and storage space than the 1980s digital
systems MIDI files were designed for. Our MIDI library is made to play modern
MIDI files which are made up of basic MIDI ‘note on’ and ‘note off’ messages,
and MIDI header data. The tool does not support the reading of MIDI files that
utilise extended MIDI features such as lyric reading and tempo changes. We choose
not to support these features as they have rarely been used in professional DAW
and MIDI editing contexts since the late 1990s and require significant amounts of
development time to support.

The standard MIDI protocol utilises three types of MIDI file- type-zero, type-one,
and type-two MIDI. Our system supports the loading of type-zero MIDI files, which
contain a maximum of only one MIDI track, and type-one MIDI files, which can
contain up to 127 MIDI tracks. We do not support the play back of type-two MIDI
files in our tool due to their relative rarity in modern applications. Alongside the
play back of pre-rendered MIDI files, the MIDI library presented also provides
a number of functions for procedurally editing MIDI files in real-time and for
scheduling MIDI events for play back. These features will be explored in section
4.1.3.

72 CHAPTER 4. IMPLEMENTATION

Once MIDI files and procedurally scheduled MIDI messages have been stored
by our tool, they can be played back via the MidiPlayer class. The MidiPlayer

class takes an input of a MidiMessage or MidiTrack object, and plays it back at
a user-specified time. The MidiPlayer class requires a BPM timing setting and
MIDI output specification, which are set via the MidiEngine class’s GUI, seen in
figure 4.3.

Figure 4.3: MIDI Engine GUI interface showing the MIDI output choices

available on the Windows desktop computer used in development

In the MidiPlayer class, MidiMessage objects are added to a dynamically sized array,
which orders events by timestamp in relation to application start. MIDI message
timestamps are checked against the current system time and if an event’s timestamp
is within two visual frames of the current time, it is sent via the C# Portmidi class
to C for output1.

The C dynamic library used to output MIDI consists of an edited version of the
Portmidi C library. We add a number of functions to Portmidi in order to support
data transfer between C# and Unity and for debugging purposes. A closer look at
our edited version of Portmidi and the way in which data is sent between C and C#
is explored in the following section.

1We send MIDI messages to C at the last possible moment because Portmidi has a maximum MIDI
event buffer size of 127 events

4.1. TOOL 1: UNITY MIDI SYSTEM 73

4.1.2 Inter-Programming Language Communication

We utilise the C library Portmidi to enable MIDI output on Windows computers
from our application. Portmidi is chosen due to its multi-platform support and
wide use as an open source MIDI I/O library. An alternative multi-platform MIDI
I/O library exists called RTMidi, but we chose to use Portmidi as it is more widely
used than RTMidi. Inter-programming language communication is used to send
MIDI event and timestamp data from C# to the Portmidi library via the C# library
System.Runtime.InteropServices, which supports the static import of functions
from the compiled Portmidi C dynamic library into C#. In C#, functions can be
imported via the code in listing 4.1, which uses the dll name and function name to
locate the function in the C file.

1 [dllImport("Portmidi", EntryPoint = "midiEvent")]

2 public static extern void midiEvent(int status, int mess1, int mess2, int

delay);

Listing 4.1: C# export code for functions to C

The code in listing 4.2 shows the registering of the function from listing 4.1 as a C
function via dll export, and is used here to expose the function in lines four to ten
which schedules MIDI events.

1 __declspec(dllexport) void midiEvent(int status, int mess1, int mess2,

int delay)

2
3 PmEvent event;

4 void midiEvent(int status, int mess1, int mess2, int delay)

5 {

6 timestamp = TIME_PROC(TIME_INFO); //current time

7 event.timestamp = timestamp + delay;

8 event.message = Pm_Message(status, mess, mess2);

9 Pm_Write(event);

10 }

Listing 4.2: dll function exporting from C of the midiEvent function for

scheduling MIDI event play back

Once functions have been declared exportable in C and imported into C#, they
can be utilised in Unity Engine. A problem with the calling of C functions from
within C# is that data sent from C# may not be readable in C and vice versa.
Basic types such as integers, floats, characters, and doubles can be sent as function

74 CHAPTER 4. IMPLEMENTATION

parameters or return values without issue, but the sending of non-basic data types
such as arrays and pointers is more difficult. In order to send such data, C#’s
interopServices’ IntPtr object can be utilised to handle raw pointers in C# and
a collection of functions for extracting data from de-referenced pointers exists in
C#. We utilise the IntPtr object when sending text arrays for setting MIDI output
channels from C to C# via the code in listing 4.3, which shows the C# and C
functions used to transfer the data. Line 20 of the listing demonstrates the use of
a function from the Marshal class which is used to extract string data from the raw
pointer. The Marshal class is part of C#’s interopServiceslibrary and includes a
number of member functions useful when using pointer data in C#, a language that
traditionally does not support the use of raw pointers.

1 //C:

2 __declspec(dllexport) char* printOutputDevice(int index);

3
4 char* printOutputDevice(int index)

5 {

6 //read device information by device index

7 const PmDeviceInfo* info = Pm_GetDeviceInfo(index);

8 return info->name;

9 }

10
11 //C#

12 [dllImport("Portmidi", EntryPoint = "printOutputDevice")]

13 public static extern IntPtr printOutputDevice(int index);

14
15 numDevices = Portmidi.Pm_CountDevices();

16 outputDevices = new string[numDevices];

17 for(int i = 0; i < numDevices; i++)

18 {

19 //convert raw pointer to Ansi-formatted string

20 outputDevices[i] = Marshal.PtrToStringAnsi(Portmidi.printOutputDevice

(i));

21 }

Listing 4.3: Sending text data from C to C# via the use of raw pointers

and functions via C#’s interopServices library

While the use of inter-language communication in Unity to run C dlls is a powerful
way to leverage behaviours not available in C#, it also has disadvantages. The
Unity editor does not support hot reloading of dynamic libraries, and a full Unity
Engine re-boot is required each time a dynamic library file is loaded. This leads

4.1. TOOL 1: UNITY MIDI SYSTEM 75

to a slow development cycle and proved to be a significant factor in the speed of
our tool development. Also, debugging native C and C++ code from C# is not
supported in Unity and any memory leaks or run-time bugs in the native code will
cause application crashes, rather than being caught by Unity’s debugger. In order to
support debugging and to speed up development time, a custom Unity debugger
for native code has been developed in the course of this research. The debugger
uses the pattern for inter-language text data sending introduced in listing 4.3 in
order to send debug messages from C to C#. When the C dll is run in debug mode,
functions that have the potential for failure are checked for errors, and if such an
error occurs the dll ceases activity and an error message is sent to Unity. We highly
recommend the creation of such a debug tool for all developers undertaking Unity
dll development due to its ability to greatly speed up development.

4.1.3 Comparison to Existing C# MIDI Tools

While C# does not include a built-in MIDI library, the play back of MIDI on personal
computers with C# has previously been achieved. Sadly, existing tools do not not
achieve a number of the features required of a successful procedural audio system
according to our design criteria and this section outlines ways in which our tool
differs from existing MIDI solutions in C#. Two tools for the manipulation and
output of MIDI files in C# exist: Github user obiwanjacobi’s library midi.net [60]
and Leslie Sanford’s C# MIDI Toolkit [61]. midi.net supports the play back of MIDI
files through the use of platform invoke calls to native code, which work solely on
Windows machines. The library gives users access to Windows’ system-level MIDI
output. MIDI Toolkit also supports the loading of MIDI files on Windows systems
and supports output to Windows MIDI outputs via connection to the Windows
Multimedia MIDI output stream API. While both systems achieve MIDI file play
back, there are a number of factors that led us to creating a custom solution, rather
than utilising a pre-existing one.

One way in which our system differs from existing C# MIDI libraries is the way
in which MIDI timestamp data is organised. While existing MIDI organisation
tools utilise relative PPQ or SMPTE timing to store event timestamps, we store
timestamps as PPQ since track start, as discussed in section 4.1.1. This means that
MIDI messages can be scheduled for play back in real-time, rather than requiring
MIDI tracks to be pre-rendered, making our system well suited to the low-latency
procedural generation of audio. A third advantageous feature of our library is the

76 CHAPTER 4. IMPLEMENTATION

way in which it closely interfaces with Unity. The timing system of our tool is
written solely for use with Unity Engine and makes use of Unity’s AudioSettings.
dspTime timer, a highly accurate timer which is explored in section 3.2 of this thesis.
The use of Unity’s timing system in our tool means MIDI events can be accurately
timed to coincide with Unity system events. This differs from the timing systems of
existing C# MIDI tools, which are applicable in non-Unity applications, but lack
the advantages that Unity timing gives when working alongside existing Unity
systems.

Another feature of our system that differs from existing C# solutions is its potential
for multi-platform support. Through the use of Portmidi, our system has signif-
icantly higher potential for multi-platform support than either of the existing C#
MIDI libraries which are limited to Windows computers. This is a useful feature
as Unity is a multi-platform environment and limiting the tool to Windows signif-
icantly reduces its usability. That being said, due to time constraints in our devel-
opment process, we currently only supply a Windows build of our dynamic library
for download. This is because we develop and test the tool on Windows, yet the
creation of dynamic library files for unix-based systems would require little effort
as much of the cross platform code is already in place.

AudioSettings.dspTime can be used in our system to directly set MIDI messages to
play at specified times via the function MidiPlayer.PlayScheduled(MidiMessage,

dspTime) which takes a MIDI message input and a Unity dsp time in seconds (as a
double precision floating pointer number) in order to schedule MIDI events. This
pattern emulates Unity’s AudioSource.PlayScheduled() function, which schedules
audio file play back and is documented in our discussion of Unity Engine’s audio
timing in section 3.2. This similarity in syntax is utilised in order to enable
Unity users with programming knowledge to quickly access our library without
learning new design patterns. We also implement a MidiPlayer.Play(MidiMessage

) function, which mimics Unity’s AudioSource.Play() function, and causes a MIDI
message to play at function call. Through the availability of these two functions
and the use of absolute timestamps in our MIDI file storage (allowing audio
implementers to edit MIDI files in real-time), our tool supports a level of procedural
audio that cannot be achieved by existing Unity MIDI tools, and nor can it be
achieved by existing C# MIDI libraries.

4.1. TOOL 1: UNITY MIDI SYSTEM 77

4.1.4 Section Results

In this section, we test whether the developed MIDI library meets the evaluative
criteria detailed in chapters 1 and 3 of this thesis in order to determine the
tool’s suitability for the creation of procedural game audio. The MIDI library’s
ability to meet evaluative criteria can often be understood through our preceding
documentation, but in some situations further testing is required.

As described in section 4.1.1, the tool has both a GUI and a programming API,
both of which are based on the style of Unity’s own scripting and GUI design,
thus meeting a core design criteria outlined in Chapter 1. In order to understand
whether this tool meets the second core evaluative criteria of this thesis, support
for procedural audio, the tool should meet the technical criteria from Chapter 3 and
contain the technical attributes introduced in section 4.1.

The tool presented makes widespread use of the MIDI protocol, and therefore
achieves the first of our three technical evaluative criteria. In order to understand
the extent to which the tool achieves support for MIDI, we test the tool’s ability
to accurately play back MIDI files later in this section. The second technical
evaluative criteria requires support for time-accurate audio. This is linked to
technical requirement 2 from the start of this chapter and once again requires
testing, which will be carried out later in this section. The final technical evaluative
criteria from Chapter 3, support for audio synthesis or audio effect processing,
cannot be met directly by our MIDI tool as it has no DSP functionality. While this is
the case, the ability of our Unity MIDI library to output MIDI messages via software
MIDI ports, as explored in section 4.1.1, means that audio synthesis and effects can
be accomplished through the use of external tools. This includes the modular use
of DAWs and hardware synthesisers for synthesis and effect processing, and it is
therefore unnecessary for our tool to internally support DSP.

Finally, as explored in section 4.1.3, our tool is capable of procedurally editing MIDI
track data and can schedule MIDI events using a collection of custom C# functions,
thus achieving technical attribute 2 from section 4.1.1. While these functions are
implemented, they rely on the same mechanisms that enable MIDI file play back
and the time accurate output of MIDI, and therefore their degree of success will be
best understood once the outcome of the tests carried out in the remainder of this
section are known.

In order to test the tool’s ability to play MIDI files, we create three MIDI files using

78 CHAPTER 4. IMPLEMENTATION

Reaper that utilise different aspects of the MIDI standard. We load each file into
our Unity MIDI player and then route output MIDI data back into Reaper (with the
use of MIDI Loop, a MIDI routing solution for Windows [62]), where the MIDI data
is recorded in real-time and compared to the original MIDI files. The test is used
to check that note channel data, amplitude, and pitch data is accurately read and
output by the tool, and to see whether MIDI data is time-accurate once processed
by the tool. We do not test for our tool’s ability to read MIDI files that include meta-
data within MIDI tracks, as these are not supported for play back by our tool (see
section 4.1.1).

The first of three MIDI files used to test our system’s MIDI file play back is a one
octave ascending C Major scale starting on middle C in crotchets. A C Major scale is
chosen because it is the most widely used 12 tet scale, consisting of the white notes
on a keyboard from middle C up an octave. Crotchets are chosen as they make time-
accuracy testing easy in a second-based system, as each note should be exactly half
a second from the previous note at 120 BPM. In our test MIDI file, amplitude data
starts at a maximum amplitude of 0x7F on the first note and reduces amplitude by
18 every subsequent note, ending at an amplitude 0x01 on C5. All MIDI data is set
to MIDI channel 1 and the file is stored as a type-zero MIDI file, meaning that only
one MIDI track can be present. The second MIDI test is identical to the first test,
except a type-one MIDI file is used rather than a type-0. The final test utilises more
complex MIDI features and consists of a one bar phrase from the Kyrie Eleison
section of Bach’s Mass in B Minor. The type-one MIDI file includes musical data
split across five MIDI tracks corresponding to vocal parts in the mass, each with
an assigned channel. While the original phrase is written at a single amplitude, we
adjust the amplitude of each track to test for problems occurring in play back.

The outcome of all three MIDI file tests can be seen in figure 4.1. The figure shows
that our tool accurately reproduces MIDI note, amplitude, channel, and track data,
but is not sample accurate (to the 44100th of a second) in any of our tests. In order
to collect this data we compare the output Unity MIDI files against the original
MIDI in Reaper and check each note against the original MIDI file. MIDI parsed
through our Unity MIDI system is not accurate to the sample, yet the threshold
for audible time inaccuracies is 5 ms (220.5 samples) for percussive signals and is
30 ms (1323 samples) for non-percussive signals [43] meaning that exact sample
accuracy is not necessarily required. We therefore undertake a further test in order
to understand whether timing inaccuracies of our MIDI tool are under one or both
of Haas’ thresholds. To test time inaccuracy, we use the test introduced in Chapter

4.1. TOOL 1: UNITY MIDI SYSTEM 79

3 of this thesis which uses a ChucK timing test program that analyses five iterations
of impulse signals synthesised at 120 BPM in order to test for time inaccuracies.
We use the MIDI output from MIDI file test 1, which is four seconds of MIDI
notes each spaced 500 ms apart, and measures the mean and standard deviation
of time inaccuracy in the signal. Results of the testing can be seen in figure 4.4 and
show that our Unity MIDI system has a potential for time inaccuracy of up to 630
samples (14 ms). It is important to note that the maximum time inaccuracy between
events is higher than 630 samples because signals can be positively and negatively
displaced, therefore a potential audible inaccuracy of up to 1260 samples (28 ms)
can be inferred. This does not meet our ideal time inaccuracy threshold of 5 ms
(or 220 samples at a sample rate of 44.1kHz), but is below our higher threshold for
non-percussive signal inaccuracy of 30 ms (1323 samples) and therefore passes our
minimum requirement for time accuracy.

Channel
Errors

Track
Errors

Pitch
Errors

Amplitude
Errors

Sample Jitter
(excluding first note)

Test 1 0/8 0/8 0/8 0/8 7/7
Test 2 0/8 0/8 0/8 0/8 7/7
Test 3 0/15 0/15 0/15 0/15 14/14

Table 4.1: MIDI file read errors once files have been read and output by

our Unity MIDI library. The data shows that time inaccuracies are the

only issues in the system’s output

In order to understand the source of the inaccuracy, we run a number of debugging
checks. At first we collect timestamp info as audio is scheduled in Unity and
check whether MIDI timestamps are being incorrectly calculated. All timestamp
data used internally in our Unity plugin is stored as PPQ values (in integers)
and is translated into seconds at note schedule time (in double precision floats).
When checked, both types of timestamp proved to be accurate to the highest
degree possible (a 960th of a crotchet in PPQ and a 64 bit double precision floating
point number in seconds). We then test the MIDI timestamp data once it is
translated into milliseconds by Portmidi. At this stage, timestamp data loses
accuracy as it is translated into millisecond delays in integers, but this rounding
error cannot account for the up to 16 ms of time inaccuracy measured. In order
to check the timing of MIDI message scheduling times from Portmidi, we route
Portmidi timestamp data from C to the Unity debugger. The results show that
Portmidi’s timing function timestamp = TIME_PROC(TIME_INFO) is not outputting

80 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Mean and standard deviation of audio timing inaccuracies

of the Unity MIDI library when tested with a C major scale over five

iterations. The vertical axis shows the degree to which audio signal

timing differs from accurate timing in samples

accurate results and is responsible for the time inaccuracy present. While the
location of the time inaccuracy can be pinpointed, fixing it requires work that is
not within the time scope of this thesis’s development. However, an outline of
potential solutions is outlined below. In order to fix the problem, a custom C timer
could be created that uses timestamp = TIME_PROC(TIME_INFO) as its start time, but
with all timestamps beyond system startup determined by a custom high accuracy
timer. This would remove reliance on the timing function that is the source of the
timing problems experienced. Secondly, a custom updating thread in C running
the MIDI system would help to improve performance and timing accuracy. Such a
thread would reduce the danger of code blocking and data races occurring on the
Unity thread, which is likely to be contributing to the time inaccuracy experienced.
An alternative possibility would be to use RTMidi instead of Portmidi. RTMidi and
Portmidi fulfill a similar role as multi-platform MIDI I/O libraries, but RTMidi is
written in C++ rather than in C, and may have a timing system that simplifies high
accuracy scheduling of MIDI events.

While the degree of time inaccuracy present in our tool means that it does not meet
ideal technical specifications, the tool achieves all other design criteria. The tool
is therefore a partial success, but requires further iteration if it is to be useful in

4.2. TOOL 2: UNITY VST SYSTEM 81

professional game audio applications which utilise percussive signals. Work to
improve the tool’s time-accuracy is underway and will be explored in the future
works section of this thesis.

4.2 Tool 2: Unity VST System

The second tool created is a VST2 plugin effect host for Unity Engine. VST2 is
the most popular audio plugin format in DAWs, yet there is no support for its
use in any of the major game audio development environments. This is due to
licensing concerns that make it difficult to embed commercial VST plugin code
into video games. The audio plugin host presented here, and all plugins used to
test the tool, are open source and freely available, thus avoiding commercialisation
issues that have led to the lack of support for VST2 plugins in game engines. If
successful, the VST2 plugin host presented will make hundreds of audio effect
plugins available for use in Unity and will vastly expand the procedural audio effect
potential of the engine. We discuss the development of the Unity VST2 plugin host
over four sections: section 4.2.1 presents an overview of the tool and outlines its
technical features and components. Section 4.2.2 explores audio programming in
C and C++ and looks at ways that we apply audio programming design patterns
in the development of our tool. Section 4.3.3 explores extended inter-application
communication techniques utilised in our plugin host, with a particular focus on
optimising the tool’s performance, a major hurdle in the development of the plugin
host. Finally, section 4.3.4 evaluates the tool’s success in relation to the design
criteria defined in section 3.1.

The VST2 plugin tool created supports the loading of VST2 effect plugins, but does
not support VST1 or VST3 plugins. VST1 is a deprecated plugin format that is not
supported by modern DAWs and is therefore not a concern in our development.
On the other hand, while VST3 succeeds VST2 as a format, the quantity of plugins
that utilise the VST2 standard far surpasses those using the VST3 format, and we
therefore choose to support VST2 plugins with a future goal of expanding the tool to
support other plugin formats. The tool is also currently only runable on Windows
computers. While multi-platform support would be a powerful feature of our tool,
it is not within the scope of this thesis. This is particularly the case in the creation of
an OSX compatible dynamic library which would require writing platform specific
C++ on a Macintosh computer via Xcode, a programming environment that we

82 CHAPTER 4. IMPLEMENTATION

are currently unfamiliar with. The tool presented also only supports audio effect
plugins, but not audio synthesis plugins, as support for synthesis proved to be out
of scope of our project.

In addition to achieving the evaluative criteria from chapters 1 and 3 of this thesis,
in order to be successful, the plugin host developed must be able to load VST2 effect
plugins in a DAW-like fashion. DAWs represent the main use-case for VST2 plugins
and we use the popular DAW Reaper as a benchmark against which to test our tool
later in this chapter.

4.2.1 Overview of Tool

In order to understand the development process of our Unity tool, it is important
to understand the function of a VST2 effect and that of an effect host. VST2
plugin effects take audio signals as an input, apply signal processing effects, and
then output processed audio. In order to support this process in an executable
application, plugin hosting code is required to load plugins into memory and to
route audio between plugins and the application. Alongside audio signals, VST2
effect plugins also utilise changeable parameter data which is used to control signal
processing algorithms. A VST2 plugin host is responsible for querying loaded
plugins in order to understand these parameters and exposes them for use by the
executing application.

The tool developed here allows users to load VST2 plugin effects into Unity Engine
and to route audio from the engine through one or more audio effect plugins and
back to Unity. The process of loading and routing audio through VST2 plugins
cannot be accomplished with Unity’s C# scripting language alone, and requires
the use of a C++ VST2 library called the VST2 SDK. The VST2 SDK, released by
Steinberg, the creator of the VST plugin format, includes a number of functions
useful when working with VST2 effect plugins. In order to access these functions,
we develop a dynamic library for Unity using C++ that wraps key VST2 SDK
functions and makes them accessible to Unity’s C#.

The C++ Unity dynamic library created loads and unloads VST2 plugins from
memory, handles audio input and output to the plugins, and is responsible for
communicating parameter changes to the loaded plugins. The library also includes
a number of exported dll functions that are used to communicate directly with
Unity’s C#. The development of the C++ section of the VST2 plugin host requires

4.2. TOOL 2: UNITY VST SYSTEM 83

a significant amount of work and this process is documented across two sections
of this chapter. Section 4.2.2 explores the development of audio software in C and
C++ and its application in our plugin host. Section 4.2.3 explores the process of
interfacing audio and parameter data between C++ and C# .

The C# section of the plugin host tool, visualised as the three grey boxes in
figure 4.6, is responsible for all interfacing with the tool’s users and includes a GUI
that can be viewed in the Unity Engine editor. The figure also shows the separation
between C++ and C# classes and broadly outlines dataflow in the tool.

Figure 4.5: VST effect GUI in Unity showing plugin parameter and path

settings for a loaded reverb plugin

This new Unity C# GUI controls the loading of VST2 effect plugins and the setting
of parameters and can be seen in figure 4.5. The GUI allows users to specify
the path of a plugin file to be loaded and presents a list of parameters which
allow users to sculpt the tone of the plugin’s output. The GUI is generated

84 CHAPTER 4. IMPLEMENTATION

by the C# class VSTEffect, and is loaded as a component onto a Unity object
containing an audio source component, thus allowing the effecting of audio files
played in engine. Through utilising the engine’s built-in GUI development library,
the interface presented uses a highly standardised design style and should be
familiar to a regular Unity user. We utilise the engine’s audio callback function
OnAudioFilterRead(...), as introduced in section 3.2.3, in order to effect audio
produced in Unity. OnAudioFilterRead(...) alongside being a function applicable
in the synthesis of audio signals, can also be used to effect existing audio in the
engine such as that created by an audio source component.

In order to achieve audio effect processing via OnAudioFilterRead(...) audio and
parameter data are sent from Unity to the C++ plugin host and then on to the VST2
plugin. Audio is then routed back to the Unity callback function from C++ for
output by Unity. In order to send large quantities of audio and parameter data
between Unity and C++, we utilise inter-programming language techniques that
go beyond those explored in our MIDI tool in section 4.1. Section 4.2.3 outlines
these extended techniques.

The C++ plugin host developed also includes a class responsible for debugging via
Unity’s console debugger, which we take directly from the MIDI library explored
earlier in this chapter. The use of this debugger greatly expedites the development
of our tool, and utilising such a tool is highly recommended to others undertaking
C or C++ plugin development for Unity Engine.

4.2.2 Audio Programming in C and C++

C++ is chosen as the main language for the development of the tool for a number
of reasons. C++, alongside the C programming language, is a widely used audio
programming language and many significant libraries for audio development run
in either C++ or C. This list includes the VST2 SDK, Unity’s underlying audio
system code (FMOD), and the Windows audio output system upon which all of
our development is built. C and C++ have become popular for audio programming
due to their ability to give users a high degree of control over memory and thread
management, and do not automate memory management in the way that languages
such as Java and C# do.

The strict control over memory and threading systems is highly useful in audio
programming as it allows users to optimally fulfill a number of requirements in

4.2. TOOL 2: UNITY VST SYSTEM 85

Figure 4.6: Block diagram of Unity VST host showing major C# and C++

classes and inter-language dataflow

86 CHAPTER 4. IMPLEMENTATION

audio programming, which are often difficult to achieve in higher level languages.
One example is C and C++’s ability to avoid memory allocation in audio hardware
callbacks by initialising all memory in other threads without the danger of it being
auto-deallocated. Audio hardware callbacks, which are a widely adopted program
design paradigm in audio programming, constitute a hard-real-time system and
memory allocation cannot be used in such a system. This is because memory
allocation uses memory locking techniques such as mutexes, a mechanism for
locking and unlocking memory while it is being read and written to, which create
blocking code and introduce a high degree of risk of buffer under-run which can in
turn cause audible artifacts.

Another example of an audio programming problem that can be avoided through
the use of C++, and, with more difficulty, C, is that of slow and un-safe inter-thread
communication. When data is sent between threads in C and C++, a traditional
way to avoid problems with data being read by one thread while it is being written
to by another (thus causing undefined behaviour) is to use mutexes. As explained
in the previous paragraph, mutexing in an audio hardware callback in a real-time
application is not a safe technique. Instead of mutexing, the C++ standard library
supplies functionality for lock-less inter-thread data transfer through the type std::
atomic<type>. Functions such as std::atomic.exchange(...) allow the swapping
of simple data types stored by an atomic object within a single cycle of the CPU, thus
removing the need for thread locking to prevent read-write overlap. Applications
of atomic operations within C are also possible, but are more difficult to achieve as
there is no atomic type in the C standard library and external tools are required. In
our tool, we use the parameter setter and getter code presented by the VST SDK
and therefore avoid writing our own atomic code, but an awareness of its need
leads to our avoidance of directly accessing data utilised from other threads within
our audio callback.

We choose to use C++ rather than C for the development of this tool because the
VST2 SDK is written in C++, and it is easier to interface with it from C++ than
from C. C++ is also chosen because of its support for the use of dynamic memory
allocation classes such as std::vector. These classes make the storage of large
numbers of VST plugins within our host easy to manage, whereas such a process
would be more difficult to achieve in C where the labour-intensive development of
a custom dynamic memory system would likely be required.

In summary, our choice to use C++ for the bulk of the coding in our application is
due to C++’s wide use as a standard programming language for audio program-

4.2. TOOL 2: UNITY VST SYSTEM 87

ming and due to its suitability for real-time system design where high performance
is required. C++ features such as user-managed memory, use of atomic types to
avoid mutexes, and avoidance of memory allocation at run-time make it a highly
suitable environment for audio programming.

4.2.3 VST-Host Architecture

The hosting of VST2 plugins on Windows is a sparsely documented process
and much of our development relied upon reading and interpreting the VST2
SDK source code. Due to this scarcity of documentation, we outline the core
requirements of a VST2 host below, and explore how we meet these requirements
in our tool. The key attributes of a plugin host are its ability to load VST files into
memory, its ability to handle operation codes sent to the VST2 plugin, and its ability
to deal with audio and MIDI interfacing with the plugin.

In order to dynamically load a plugin, the C++ HMODULE LoadLibrary(wstring)

function is used to create a handle to load the plugin into memory. Once this is
achieved, GetProcAddress(HMODULE, string) is used to find the memory address
of the plugin’s main function so that the dll file can be run. Once the plugin
is loaded into memory (as an AEffect object), and the dll’s main() function has
been called, operation codes are sent and received from the loaded plugin via the
AEffect->dispatcher(...) call, a heavily overloaded function that can take a range
of parameters. One parameter type that is shared between all overloaded versions
of the dispatcher function is a string variable input for the operation code identifier,
which corresponds to an enumerated list of operation commands and can be found
in the source code for the AEffect class in the VST2 SDK. Important examples of
operation codes used in our plugin host include effGetParamName, which retrieves
parameter names from the plugin, and effSetSampleRate, which sets the plugin’s
sample rate.

Audio processing via the VST2 SDK utilises an audio callback function to be called
by an external process. We trigger the plugin audio callback events from Unity
and include the audio DSP call in OnAudioFilterRead(...) functions which are
synced to the Unity master audio callback. When OnAudioFilterRead() is used to
call VST audio callbacks, audio data is routed from Unity via an exported function
called processBuffer(...). The processBuffer(...) function in turn calls an audio
processing function in our VSTEffect objects that wraps the VST2 SDK audio
processing functions. In order for a VST2 host to process audio in VST2 plugins

88 CHAPTER 4. IMPLEMENTATION

the VST2 SDK function AEffect->processReplacing(...) is utilised which calls the
core audio signal processing function of the VST2 in use. The processReplacing

(...) function requires a pointer to a 2D audio buffer for input and one for output.
This I/O structure is different to that used by Unity’s OnAudioFilterRead(...) and
requires a de-interleaver and interleaver for stereo signals within our audio callback
function in C++.

Alongside processing audio, VST2 plugins are often used to process MIDI data.
Like VST2 parameter processing, VST2 MIDI processing utilises operation codes
for its core functions via the plugin’s dispatcher. The dispatcher function for
scheduling events takes an input of an array of MIDI events that must be stored
using the VSTEvents type, an array of VSTEvent objects. The code in listing 4.4
demonstrates the creation of a note on message, which is packaged into a VSTEvents

object. The listing also demonstrates the use of VSTMidiEvent.deltaFrames, which
allows the offsetting of MIDI data within the DSP callback in which the events are
processed, thus supporting sample accurate MIDI messages. While we can achieve
sample accurate MIDI play back using the techniques explored above, our final
released plugin does not include VST2 instrument file or MIDI support. This is
due to memory access issues that currently occur when we load VST2 plugins that
utilise MIDI input, and a crash-free implementation of VST2 MIDI input has proved
to be outside of the time constraints of this thesis.

1 VstEvents midiOutEvents;

2 VstMidiEvent midiEvent;

3 memset(&midiOutEvents, 0, sizeof(midiEvent));

4
5 midiEvent.type = kVstMidiType;

6 midiEvent.midiData[0] = 0x91; //Note on, channel 1

7 midiEvent.midiData[1] = 60; //Middle C

8 midiEvent.midiData[2] = 80; //Amplitude 80

9 //send to VstEvents struct

10 midiOutEvents.events[0] = (VstEvent*)&midiEvent;

11 midiEvent.deltaFrames = 0; //Time offset in samples

Listing 4.4: VSTEvent code that generates a MIDI note on message and

stores it in a VSTEvents object

4.2. TOOL 2: UNITY VST SYSTEM 89

4.2.4 Extended Inter-Programming Language

Communication

In order to support the high volume of audio data being sent between C++
and C# in audio callback functions, we have invested significant effort into the
optimisation of inter-application array and pointer transfer. Initially we utilised
the C# interopServices function Marshal.Copy(...), which converts a raw pointer
(intPtr in C#) into an array of floating point numbers, and allows float arrays
created in C++ to be ‘unpacked’ in a format that can be read by C#. The same
programming structure was used to send audio data from C# to C++ in section
4.1 and the complete C# code for sending audio via this method can be seen
in listing 4.5. In the listing, lines six and seven call the C++ audio processing
callback function, and the surrounding code prepares the data for inter-language
transfer.

While the use of the marshalling technique seen in listing 4.5 was successful in
transferring audio data between C# and C++, it used large amounts of system CPU
resources. When tested with a basic 2 channel delay plugin it required around 35%
of the CPU allotted to audio by Unity (on a 2011 Macbook Pro with an Intel Core
i5 processor). This is a high CPU usage, especially in game development where
intensive visual processing alongside audio processing is common. The use of the
Marshal.Copy(...) functions in lines four and nine of listing 4.5 required significant
CPU usage because all audio data sent through is copied into newly allocated
memory, thus causing a large volume of memory allocations and de-allocations for
every audio buffer processed. This use of memory allocation on the audio thread
caused mutexes to occur, a technique that is avoided in audio programming as
discussed in the previous section of this chapter.

Due to the unsuitability of Marshal.Copy(...) for the sending of large volumes
of real-time audio data between applications, we looked for alternative solutions.
A major problem with sending data between C# and C++ is that the C# garbage
collector could call while data is being read by C++, thus causing the program to
crash. One solution is the copying of data from the garbage collected C# into an
intermediary un-managed data type as achieved by Marshal.Copy(...). Another
solution is to ‘lock’ data in a way that stops the garbage collector from de-allocating
it. C# supports this behaviour through the interopServices class GCHandle, which
allows the creation of handles to the garbage collector and the pinning of data,
thus moving it from managed to un-managed code. We utilised the GCHandle to

90 CHAPTER 4. IMPLEMENTATION

send audio data between C# and C++ with GC pinning in line three of listing 4.6.
The code presented pins data before sending it to C++ via the processBuffer(...)

function in line four. GCHandle pinned data is cast to a raw pointer for transfer
and then cast back to a GCHandle in line seven. While the use of garbage collector
locking appeared to be a solution to our CPU problem, it was quickly determined
that it required memory allocation and de-allocation that once again contributed to
heavy CPU usage and mutex locking. The code in listing 4.6, when used to run the
same stereo delay plugin loaded with the Marshal.Copy(...) method examined
earlier, once again used 35% of audio CPU, a clearly unacceptable amount of
CPU.

1 IntPtr inputArrayAsVoidPointer = new IntPtr(Void*);

2 void OnAudioFilterRead(float[] data, int channels)

3 {

4 Marshal.Copy(data, 0, inputArrayAsVoidPointer,

5 pluginHost.blockSize * channels);

6 IntPtr outputVoidPtr = HostdllCpp.processFxAudio(

7 thisVSTIndex, inputArrayAsVoidPointer,

8 pluginHost.blockSize, channels);

9 Marshal.Copy(outputVoidPtr, data, 0,

10 pluginHost.blockSize * channels);

11 }

Listing 4.5: The marshalling of audio data with IntPtr’s in C# as used in

the initial development on our VST2 host tool

1 void OnAudioFilterRead(float[] data, int channels)

2 {

3 GCHandle audioHandle = GCHandle.Alloc(data, GCHandleType.Pinned);

4 IntPtr outputVoidPtr = HostdllCpp.processFxAudio(

5 thisVSTIndex, GCHandle.ToIntPtr(audioHandle),

6 pluginHost.blockSize, channels);

7 GCHandle gch = GCHandle.FromIntPtr(outputVoidPtr);

8 data = (float[])gch.Target;

9 audioHandle.Free();

10 }

Listing 4.6: Use of garbage collector calls to avoid memory de-allocation

while inter-programming language data transfer is occurring in C#

Through informal discussions with audio programmers at GDC in 2018, a third
way of sending audio data between C# and C++ was trialled. The new approach

4.2. TOOL 2: UNITY VST SYSTEM 91

can be seen in listing 4.7 and uses the keywords [In, Out] in the external function
definition of the float array parameter in lines one and two. The use of these
keywords changes the float parameter from being passed by value to being passed
by reference, and when such a parameter is passed to C++ it can be read and
written to as if it were a reference to an object in C++, thus avoiding the need to
cast data to and from the IntPtr type via marshaling or copying. While initially
we were skeptical as this approach does not lock the garbage collector or copy data
into a safe un-managed location, we have observed no audible artifacts or crashes
caused by unexprected de-allocations. The technique was also introduced to us
by professional game industry audio programmers and we therefore act under the
assumption that the C# compiler is aware that data is in use and does not de-allocate
it. The use of this technique reduces our CPU usage from the 35% of the Unity audio
CPU budget for loading a simple stereo delay plugin to 0.8%. This shows that the [

In, Out] method used is a highly appropriate C# method for inter-application data
transfer of audio data due to its ability to send data between applications without
copying of data by value occurring.

1 public static extern void processBuffer(int vstIndex,

2 [In, Out] float[] audioThrough, long numFrames,

3 int numChannels);

4
5 void OnAudioFilterRead(float[] data, int channels)

6 {

7 HostdllCpp.processBuffer(thisVSTIndex, data,

8 pluggoHost.blockSize, channels);

9 }

Listing 4.7: Callback using In, Out keywords to send and receive data

in C# from C++

4.2.5 Section Results

In order to understand whether the tool presented meets the evaluative criteria of
a successful procedural audio system, testing is undertaken. We test audio output
across different plugins loaded in Unity against the same plugins loaded in Reaper.
This is done in order to understand whether our tool adheres to the VST2 plugin
standard and, by extension, whether our tool meets our technical evaluative criteria
of supporting a standard audio protocol. We test our VST host by loading two
different plugins into the tool and compare audio output against that achieved by

92 CHAPTER 4. IMPLEMENTATION

Reaper by routing audio from Unity to Reaper through the use of audio routing
tool Virtual Audio Cable [63]. We utilise a five second stereo audio file consisting of
clicks at 120 BPM which pans linearly from left to right over the five second period.
The click file is used to simplify analysis of panning and sample-level differences
in signals as the click samples are easy to observe on visual debugging tools and
allows us to quickly diagnose any errors that may occur. The loading of plugins
in our tests occurs in a ‘built’ .exe Unity application, but informal tests show that
identical results can be achieved in Unity’s edit mode.

Our first test utilises a custom-built delay plugin created in Juce, which we
developed with this test in mind. The plugin is developed so that no randomisation
of internal parameters occurs, therefore allowing a sample-level analysis of audio
data. The delay plugin uses stereo input with a 50% mix parameter and 50%
feedback parameter. Figure 4.7 demonstrates processing clicks that are played at
120 BPM and pan from the left channel to the right channel linearly over five
seconds as processed by the delay plugin in Unity, and as processed by Reaper.
Even from a low resolution visual representation of the signals, we can see that the
signals are not identical: signals created in Reaper are always positive and never
go below amplitude zero, yet Unity signals regularly drop below amplitude zero.
In order to understand this disparity, a sample level visual representation of the
waves is shown in figure 4.8. In this figure we can see that the Unity output smears
transients that were initially one sample by up to four samples.

Figure 4.7: Audio output from a delay plugin loaded in Reaper (top)

and loaded in Unity (bottom). Note that signals are identical except for

transient blurring in the Unity wave file

4.2. TOOL 2: UNITY VST SYSTEM 93

Figure 4.8: Audio output at a sample level from a delay plugin loaded

in Reaper (top) and loaded in Unity (bottom). The Unity signal shows

smearing around the impulse event

There are three potential sources of the signal smearing: our Unity VST host, Unity’s
audio output system, or the inter-application signal routing software Virtual Audio
Cable. If the signal smearing is occurring in Unity’s output or in the inter-
application routing, then it is out of our control, however if it is occurring in our
software, then it must be further explored and may signal the existence of an error
in our code. In order to understand the source of the signal smearing, we analyse
an un-effected version of the audio file used in the previous test that is routed
from Unity back to Reaper and we compare it to the original signal in Reaper.
Figures 4.9 and 4.10 show the result: smearing of audio signals is occurring without
our VST host included in the signal chain. It is also important to note that the
signal smearing seen is not audible in any of the tests undertaken. With these
results we suspect that there may be a re-sampling step occurring in Unity or in
Virtual Audio Cable which would account for the presence of signal smearing as
shown in figures 4.8 and 4.10. Because there is no ability to access the low level
code of either Unity’s audio output or Virtual Audio Cable, the source of the signal
smearing cannot be ascertained beyond the fact that it is not our tool causing it. It is
therefore concluded that the plugin host tool is accurate to a sample level and meets
our required technical criteria for time-accuracy.

It is also important to note that signal smearing will have been present in our tests
throughout Chapter 3 when testing Unity’s audio output. While this is the case, the
gate utilised in our ChucK program effectively avoided issues caused by the signal
smearing.

94 CHAPTER 4. IMPLEMENTATION

Figure 4.9: Un-effected audio output from Reaper and Unity playing a

panning five second file of clicks. We can see that signal smearing is still

present in the Unity waveform

Figure 4.10: Un-effected audio output from Reaper and Unity at a sample

level on the sixth impulse in figure 4.9 showing signal smearing similar

to that seen in figure 4.8

4.2. TOOL 2: UNITY VST SYSTEM 95

The second plugin test uses a reverb plugin called TAL-Reverb-2. We use TAL-
Reverb-2 because it is free and open source and is therefore a plugin that can be
used by a game developer in an application of our plugin host. By analysing TAL-
Reverb-2’s source code, we can see that it uses five comb filter delay lines and
six longer all-pass delay lines. Each delay line is lowpass and highpass filtered
and the coefficients of both filters are modulated in real-time. The length of each
delay line is slightly randomised and delayed signals are therefore not identical on
each play back. Due to the modulation of filter coefficients and delay line lengths,
the plugin does not produce identical results on subsequent uses. This means that
sample level analysis, such as that used in the delay plugin test, is not possible. The
test presented here is used to check if the plugin is correctly loaded and whether
audio signals are audibly similar (taking into account modulation) across Unity and
Reaper. We set the plugin parameters to 100% wet reverb signal with no pre-delay
so that signals all start at the first impulse, and a short 200 ms reverb tail so that
reverb signals do not significantly overlap. Figure 4.11 shows four waveforms (we
ran the test twice in each software to give an indication of the level of randomisation
present).

Figure 4.11: Comparison of five second 120 BPM ticks processed through

TAL-Reverb-2 in Reaper vrs Unity. Each test is shown twice due to

randomisation inside of plugin to give idea of error threshold. The test

does not show significant differences in output between applications

The results of loading the reverb plugin into Reaper and Unity show no significant
differences beyond those expected due to internal parameter randomisation. The
output also presented no audible differences beyond slight tonal changes which can
be accounted for by randomised coefficients inside of the plugin. The loading of the
reverb plugin proves the ability of our tool to accurately set plugin parameters and

96 CHAPTER 4. IMPLEMENTATION

to load a resource heavy plugin.

Between the two tests presented here, we show that our tool can accurately load
VST2 effect plugins, thus achieving our first technical evaluative criteria: support
for a standardised audio protocol in a game audio setting. We also show that
our plugin is sample accurate. The ability to load VST plugins and build them
into executable applications is a major step forward in procedural audio tool
development for game developers, and is an accomplishment that has not been
achieved by other game developers before this time. As the tool presented meets
all evaluative criteria for this thesis, it can therefore be considered to be complete
success.

4.3 Section Summary

This chapter has presented two new game audio tools that expand Unity Engine’s
capability to achieve procedural audio.

The MIDI tool presented, through its support for real-time manipulation of MIDI
files and MIDI output, allows for procedural organisation of MIDI data, which was
not previously supported by any of the four main game audio environments. While
it succeeds in this achievement, the tool does not meet ideal thresholds for time
accuracy in percussive signals sequencing and can therefore only be considered a
partial success.

The VST2 host developed adds new possibilities in the procedural application of
audio effects in video games. The tool makes VST2 effect plugins accessible in
Unity Engine applications and in doing so vastly expands the potential effect tools
available to Unity developers creating games for Windows. The tool is successful in
achieving all required criteria and is a significant step forward in procedural game
audio technology.

Chapter 5

Conclusion

To conclude this thesis, this chapter summarises the research conducted and
evaluates its success. Future work to extend the MIDI and VST tools presented
in Chapter 4 is also discussed.

5.1 Summary

In this thesis, we have documented and explored the lack of accessible procedural
game audio tools. In Chapter 1, we introduced the gap in the field and presented
initial evaluative criteria against which to test tools developed later in the thesis.
Chapter 2 outlined related fields of research that informed our development
process. We explored the related fields of algorithmic composition, interactive
techniques in game audio, and game audio tools development.

Chapter 3 presented experiments undertaken across a range of significant game
audio environments. In section 3.1, a set of technical criteria for evaluating game
audio tools was developed. The following three sections analysed a wide variety of
game audio software and explored ways in which existing game audio solutions
achieve or fail to achieve successful procedural audio. Section 3.2 explored the
four most popular game audio development environments; Wwise, Fmod Studio,
Unreal Engine, and Unity Engine, and evaluated their suitability in the procedural
generation of audio. The section concluded that none of the four environments
have support for procedural audio development, yet Unity Engine stood out as
a potential host for such a system due to its flexibility and extendability as a
tool. Section 3.3 looked at the utilisation of procedural audio in retro game audio

97

98 CHAPTER 5. CONCLUSION

technology. We chose to undertake this analysis in order to explore ways in which
historical applications of procedural audio in video games could be applied in
modern game audio environments. In section 3.4, we applied lessons learned
throughout the preceding chapter to the development of a procedural synthesiser
and sequencer created in Pd. While our Pd tool achieved a number of the
evaluative criteria introduced in sections 1.1 and 3.1 of the thesis, limitations in
Pd’s data storage and video game-applicability led us to look to other solutions for
procedural game audio tools development.

In Chapter 4, we developed two custom tools for procedural audio development
in Unity Engine. The tools developed bypassed many of the software constrictions
uncovered in Chapter 3, yet in order to do so, much of our development required
the use of rarely-used programming libraries and techniques that are severely
under-documented.

Section 4.1 explored the development of a MIDI library for MIDI file playback, pro-
cedural organisation of MIDI data, and for MIDI output on Windows computers.
While the system developed successfully achieved procedural audio and utilised a
GUI and simple programming API, it failed to achieve an optimal level of time accu-
racy. It is therefore inappropriate if highly percussive signal sequencing is required.
We uncovered the source of this time inaccuracy, but were unable to solve it. Nev-
ertheless, the tool was a partial success and the timing error appears to be solvable,
albeit with development time that is outside of the scope of this thesis.

Section 4.2 documented the development of a VST2 effect plugin host for Unity
Engine. The tool developed enables the use of a wide variety of pre-existing
tools for the procedural application of audio effects in Unity Engine via a custom-
developed GUI. The Unity VST host tool successfully meets all of our design
criteria and is a significant contribution to the development of a successful modular
procedural game audio workflow in Unity engine.

When viewed together, our developed Unity MIDI library and Unity VST Host
achieve all technical and general evaluative criteria of this thesis, other than the
MIDI library’s documented audio timing issue. The tools signify an important
advancement toward achieving accessible procedural audio in modern video
games and an exploration of their current impact in the game audio community
will be explored in section 5.3.

5.2. FUTURE WORKS 99

5.2 Future Works

In order to further support procedural audio development in video games, we
are continuing to develop the game audio tools presented in Chapter 4 of this
thesis. Firstly, our most pressing future goal is to reduce the MIDI systems’ time
inaccuracies to be under the human threshold for audible time inaccuracies. An
outline of the work required to achieve this is included in the final remarks of
section 4.1, which calls for the development of a more robust timing system that
interfaces with Unity via inter-thread communication.

Secondly, we would like to expand the MIDI tool developed so that it can be used
across a wider variety of platforms. Currently the tool only supports Windows
development, but much of the Portmidi and Unity source used is written for use
across multiple platforms. Achieving Macintosh, mobile, and Linux builds of the
tool would significantly widen its potential user-base.

The VST2 plugin hosting tool presented in section 4.2 achieved the majority of our
technical requirements, yet there are a number of ways in which it can be improved
upon after the completion of this thesis. The ability to load the graphical user
interfaces of loaded plugins, rather than interfacing directly with them through
parameters via our custom GUI, would make the tool more accessible to audio
developers with DAW skills. Also, support for VST3 and Audio Unit plugin
formats would greatly expand the possible plugins that can be utilised by our
plugin host. Finally, supporting the loading of VST2 instrument plugins and
enabling MIDI input to our plugins would be an important achievement for our
tool.

If a MIDI-enabled version of our plugin host were to be paired with our MIDI
library (once time inaccuracy issues are fixed), this would constitute a massive
achievement in procedural game audio and would easily make the Unity Engine
the most powerful modern game engine for use in the procedural development of
audio. In the meantime, the tools developed in this thesis are significant advance-
ments in procedural game audio and are an important step toward achieving this
larger goal.

100 CHAPTER 5. CONCLUSION

5.3 Final Remarks

This thesis has outlined gaps in the field of procedural game audio development
and has undertaken work to fill these gaps. While our development does not
achieve a fully realised procedural game audio solution, our tools have moved the
field forward in a number of significant ways. Our achievement of VST2 plugin
effect loading in Unity has received recognition by the game audio community,
and a tweet documenting its release was publicly liked and shared on twitter by
a number of important figures in game audio including a senior sound designer at
Ubisoft and Damian Kasbour, who is perhaps the leading game audio implementer
in the world [64]. Chris Wratt, the author of this thesis, has been offered a
paid position to continue the research by two internationally recognised game
companies: Strange Band Audio in Sydney and Indie Darling in Los Angeles. They
have also been offered a position by the interactive art space Meow Wolf in Santa
Fe, New Mexico, to create a procedural audio system based on developments made
in this thesis. The VST2 plugin host developed has picked up followers on GitHub
and is actively being used by Maxime Barruet, a French audiologist working for
Maitre Audio (a major audiology company in France). Barruet is using the tool
to load plugins that correct speaker frequency response for audiology testing of
children’s hearing.

The attention shown to our work by the international game audio community
reiterates the importance of our tools and affirms that our research is an important
step forward in modern game audio. We are delighted to see our tools being
used by audio developers to support the creation of immersive experiences in their
games, and we look forward to continuing to work with the international game
audio community in the future.

References

[1] A. Farnell, Designing Sound. MIT Press, 2010.

[2] R. Vreeland, “Personal correspondence concerning lack of game audio tools
available to independent game developers.” 2017.

[3] Unity Technologies, “Unity Game Engine.” [Website].
https://unity3d.com/ [Accessed: 2018-06-11].

[4] Nintendo Entertainment, “Super Mario Bros.” [Video Game (NES)], 1985.

[5] Nintendo Entertainment, “Donkey Kong.” [Video Game (NES)], 1983.

[6] M. Sweet, Writing Interactive Music for Video Games. Addison-Wesley, 2015.

[7] Lucas Arts Games, “Monkey Island 2.” [Video Game (Multi-Platform)], 1991.

[8] thatgamecompany, “Journey.” [Video Game (Playstation 3)], 2012.

[9] Obsidian Games, “Fallout: New Vegas.” [Video Game (Multi-Platform)], 2010.

[10] Lucas Film Games, “Ball Blazer.” [Video Game (Atari 8-bit Family)], 1984.

[11] NanaOn-Sha Games, “PaRappa the Rapper.” [Video Game (Play Station 1)],
1996.

[12] United Game Artists, “Rez.” [Video Game (PS2)], 2001.

[13] Maxis Games, “Spore.” [Video Game (Multi-Platform)], 2008.

[14] Rockstar Games, “Grand Theft Auto Five.” [Video Game (Multi-Platform)],
2013.

[15] S. Tomczak, “LittleScale: Chiptune Website.” [Website].
http://chiptech.milkcrate.com.au/ [Accessed: 2018-05-10].

[16] P. Cook, Real Sound Synthesis for Interactive Applications. CRC Publishing, 2002.

101

102 REFERENCES

[17] Phosfiend Systems, “Fract Osc.” [Video Game (Windows and OSX)], 2014.

[18] Infinity Ward, “Call of Duty: Modern Warfare 2.”
[Video Game (Multi-Platform)], 2009 .

[19] Valve Corporation, “Half Life Two.” [Video Game (Multi-Platform)], 2004.

[20] Abstraction Games, “140.” [Video Game (Windows and OSX)], 2013.

[21] D. Kastbauer and A. Woldhek, “Game Audio Podcast.” [Podcast].
http://www.gameaudiopodcast.com/ [Accessed 12/5/2018].

[22] PopCap Games, “Peggle Blast 2.” [Video Game (Mobile)], 2014.

[23] A. Alpern, Techniques for Algorithmic Composition of Music. Hampshire College,
1995.

[24] J. Maurer, “The History of Algorithmic Composition.” [Web Article], 1999.
https://ccrma.stanford.edu/ blackrse/algorithm.html [Accessed 2018-5-4].

[25] I. Xenakis, Formalized Music: Thought and Mathematics in Composition . Pen-
dragon Press, 1971.

[26] L. Polansky D. Rosenboom and P. Burk, “Hierarchical Music Specification
Language,” Leonard Music Journal, 1991.

[27] M. Allan and C. Williams, “Harmonising Chorales by Probabilistic Inference.
Advances in Neural Information Processing Systems,” Advances in Neural
Information Processing Systems (NIPS, 2005.

[28] J. Gillick, “A Clustering Algorithm for Recombinant Jazz Improvisation,”
Master’s thesis, Wesleyan University, 2009.

[29] C. Wratt and K. Moen, “Swim Swim Swim.” [Downloadable Video Game
(Windows and OSX)], 2016.
https://chriswratt.itch.io/swimswimswim [Accessed 12/5/2018].

[30] M. Lothe, “Knowledge Based Automatic Composition and Variation of
Melodies for Minuets in Early Classical Style,” Annual Conference on Artificial
Intelligence, 1999.

[31] G. Papadopoulos and G.Wiggins, “AI methods for algorithmic composition: A
survey, a critical view and future prospects,” In Proceedings of the Symposium on
Musical Creativity, 1999.

REFERENCES 103

[32] A. McLeran, “Personal correspondence concerning algorithmic composition
techniques in Spore.” May 2018.

[33] C. Garcia, “Algorithmic Music- David Cope and EMI.” [Web Article], 2015.
http://www.computerhistory.org/atchm/algorithmic-music-david-cope-
and-emi/ [Accessed 12/5/2018].

[34] Director: K. Collins, “Beep.” [Online Documentary], 2016.
http://gamessound.com/ [Accessed: 2018-05-10].

[35] id Software, “Doom.” [Video Game (DOS)], 1993.

[36] H. Lowood, “Game Engines and Game History.” [Online Article], 2014.
https://www.kinephanos.ca/Revue files/2014-Lowood.pdf
[Accessed 2/5/2018].

[37] 2K, “Bioshock.” [Video Game (Multi-Platform)], 2007.

[38] B. Nil, “Learning Audio Middleware Online: Where to Start?.” [Web Article],
2015.
http://designingsound.org/2015/01/26/learning-audio-middleware-online-
where-to-start/ [Accessed 12/5/2018].

[39] S.Horowitz and S Looney, “Masterclass: Using Game Audio Middleware.”
[Web Article], 2014.
https://www.emusician.com/how-to/masterclass-using-game-audio-
middleware [Accessed 12/5/2018].

[40] A. McLeran, “The Future of Audio in Unreal Engine.” [Game Developers
Conference (GDC) Presentation], 2017.

[41] P. Leonard, “Using Pure Data as a Game Audio Engine,” Audio Engineering
Society Journal, 2015.

[42] Enzian Audio, “Enzian Audio’s Heavy.” [Website].
https://enzienaudio.com/ [Accessed: 2018-05-11].

[43] H. Haas, Uber den Einfluss eines Einfachechos auf die Horsamkeit von Sprache. PhD
thesis, University of Gottingen, 1949.

[44] A. Hudek, “Soundflower.” [Github Repository].
https://github.com/akhudek/Soundflower [Accessed 12/6/2018].

[45] G. Wang, The ChucK Audio Programming Language: A Strongly-timed and On-the-
fly Environ/mentality. PhD thesis, Princeton University, 2008.

104 REFERENCES

[46] Audio Kinetic Staff, “Personal correspondence concerning MIDI in Wwise
with Audio Kinetic programmers at GDC 2018.” 2018.

[47] Keijiro, “MidiJack.” [GitHub Repository].
https://github.com/keijiro/MidiJack [Accessed 2/5/2018].

[48] Tazman Audio, “Fabric.” [Downloadable Software].
http://www.tazman-audio.co.uk/ [Accessed 2/5/2018].

[49] J. Garcia, “UnityOSC.” [GitHub Repository].
https://github.com/jorgegarcia/UnityOSC [Accessed 2/5/2018].

[50] A. McLeran, “Personal correspondence concerning Blueprints audio develop-
ment.” March 2017.

[51] A. McLeran, “The Future of Audio in Unreal Engine.” [Youtube Video].
https://www.youtube.com/watch?v=ErejaBCicds [Accessed 7/6/2018].

[52] D. Reynolds, “Building a Music System in Blueprints.” [Youtube Video].
https://www.youtube.com/watch?v=yce2t85MJD8feature=youtu.be
[Accessed 2/6/2018].

[53] The Processing Foundation, “Processing.” [Website].
https://processing.org/ [Accessed 12/6/2018].

[54] Yatcht Club Games, “Shovel Knight.” [Video Game (Multi-Platform)], 2014.

[55] Heart Machine, “Hyper Light Drifter.” [Video Game (Multi-Platform)], 2016.

[56] E. Lyon, “A Sample Accurate Triggering System for Pd and Max/MSP.”
[Website Article], 2006.
http://disis.music.vt.edu/eric/LyonPapers/SampleAccurate-Lyon-
ICMC2006.pdf [Accessed: 2018-05-10].

[57] C. Wratt, “Unity VST Host.” [Github Repository], 2018.
https://github.com/Chris-TopherW/UnityVSTHost [Accessed 12/5/2018].

[58] C. Wratt, “Unity MIDI Library.” [Github Repository], 2018.
https://github.com/Chris-TopherW/UnityMidiPlayer
[Accessed 12/5/2018].

[59] Haochuan, Pstieber and RDB, “Portmidi.” [Website].
https://sourceforge.net/p/portmedia/wiki/portmidi/
[Accessed: 2018-07-10].

REFERENCES 105

[60] obiwanjacobi, “midi.net.” [Github Repository].
https://github.com/obiwanjacobi/midi.net [Accessed: 2018-06-11].

[61] Leslie Sanford, “C# MIDI Toolkit.” [Downloadable C# Library].
https://www.codeproject.com/Articles/6228/C-MIDI-Toolkit
[Accessed: 2018-06-11].

[62] Tobias Erichsen, “Loop MIDI.” [Website].
https://www.tobias-erichsen.de/software/loopmidi.html
[Accessed: 2018-06-12].

[63] E. Muzychenko, “Virtual Audio Cable.” [Website].
http://software.muzychenko.net/eng/vac.htm
[Accessed: 2018-05-10].

[64] C. Wratt, “Tweet About Game Audio Tools.” [Tweet].
https://twitter.com/ASCIIVacation/status/990812742192840704
[Accessed: 2018-05-10].

